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Abstract

This paper describes a modification for the practical relevance

of unit root tests for time series generated by linear stochastic difference

equations with an explosive root.



1.  Introduction
The utility of unit roots tests in the process of transforming a

non stationary time series into stationary time series, especially in the

ARIMA modeling is well known in the literature. In particular, the

Augmented Dickey Fuller (ADF) test is a valuable tool whenever the time

series is generated by stochastic difference equation with a couple of

suspected unit roots along with the roots that are stationary (or non-

explosive) roots. ADF test is essentially a test with one-sided alternative,

in that the rejection of the presence of a unit root by the ADF test leads

to the conclusion that the stochastic difference equation is auto-

regressive in nature. The main objective of this study is to expose the

invalidity of the ADF test when the stochastic difference equation

generating the given time series has an explosive root in addition to

suspected unit roots and stationary roots. Based on a result due to Suresh

Chandra, Manjunath and Vaman (1999), a modification is suggested

that can enhance the practical utility of ADF tests when the time series

has an explosive root.

With reference to the time series  ,...3,2, tYt  generated by

any of the linear models
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(Y1 is fixed),  where,  t  is a sequence of i.i.d. N(0, 2) random

variables, Dickey and Fuller (1981) have investigated the likelihood ratio

criterion to test H: 1  against H1: .1 They have also derived the

limiting distribution of the test statistic under both specifications in (1.1).

Their investigations extend their results to general autoregressive models,
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for which the asymptotic equivalence of the limiting distribution of the

least squares estimator of )and,(   has been established.

To be specific, the generalization covers the specification (in

their notation)

ttt ZYY  1
 or

           ttt ZpntYY 



 
  2

1
1                  (1.2)

where,
           Zt = Yt – Yt-1

and is generated by a stationary auto regressive process of order p (AR(p))

model

tptpttt ZZZZ    ...2211 (1.3)
wherein { t } is a sequence of  independent and identically distributed

as N(0, 2) random variables. In view of the facts (Dickey and Fuller,

1981, p. 1066)
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where, here and hence forth, )( np hO  denotes, generically,,

terms which are bounded in probability, on being divided by hn. Dickey

and Fuller have established the asymptotic distributional equivalence of

the least squares estimator of (, , ) in the models in (1.1) and (1.2)

respectively, under HA:  = 0,  = 0,  = 1.

2.  Invalidity of Dickey – Fuller Test Under Explosive

Conditions

The first objective in this paper is to demonstrate the invalidity

of  the asymptotic distributional equivalence of the least squares estimate

of (, , ) in (1.1) and (1.2) respectively, under HA, when the stochastic

difference equation generating Zt has an explosive root.

Towards elaborating this point, and to maintain consistency of

notation, let us consider the model

***
12

1
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where,
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and {Zt
*} is generated by the stationary autoregressive model

4

  tptZptZtZ   *...*
11

* (2.3)

On setting  t to be the usual i.i.d. N(0,2) sequence, the model

(2.1) is equivalent to

tZtYpnttY 



 
 12

1   (2.4)

where, {Zt} is now generated by a stochastic difference equation

of order (p+1):

tεptZpη...tZηtZ  1111 (2.5)

When one of the roots, namely , of the polynomial equation

0...)( 1
1

21
1  


p

ppp zzzzP      (2.6)

is larger than one.1

Hence {Zt} as a partially explosive non-stationary series (in

deviance to the stationarity assumptions made in Dickey and Fuller (1981).

On invoking the results in Venkataraman (1968), one can

easily verify that

1 Most authors use the roots of polynomial equation
0...1)( 1

1
2

21
*  


p

p zzzzP   instead of those of P(z)=0 to classify the time
series as stationary or non-stationary. The roots of P*(z)=0 are the reciprocals of
the roots of  P(z)=0. To be precise, the roots of P*(z)=0 that are numerically larger
(smaller) than 1 are precisely the roots of P(z)=0 that are numerically smaller
(larger) than 1. This ought to clarify any confusion that might arise when we refer to
stationarity or otherwise with reference to the roots of P(z)=0 in relation to unity.
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The different rates of convergence of series in (1.4) and (2.7)

are sufficient to reveal the invalidity of asymptotic equivalence of the

least square estimator of (, , ), under HA, relating to the  equations

(1.2) and (2.1).

This fact can also be conceived either by direct evaluation of

plim Mn
-1 Hn Mn

-1 (vide Dickey and Fuller, 1981, p. 1066), or, by setting ̂

as the least squares estimate of , and on noting from Venkataraman

(1968) that, in the presence of the explosive  root ,    1ˆ
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when  is not present in the model (2.1) (vide Dickey and Fuller, 1981, p.

1060).

3.  Modification Suggested When  is Known

It is easy to note that the models (1.1) and (2.1) are equivalent

when Yt is transformed to .1
*

 ttt YYY    (and consequently Zt to Zt
*).

Hence the convergence rates of the series in (1.4) hold as such when Yt

and Zt are replaced by Yt 
* and Zt

 * respectively. This leads easily to the

asymptotic validity of Dickey and Fuller test for the transformed process

{Yt
*} for testing for the unit root in (2.1).

4.  Modification Suggested When  is Unknown

When  is unknown, but known to be larger than unity, we propose

the estimator for  given by
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It has been proved (Suresh Chandra, Manjunath and Vaman,

1999) that  { )ˆ(  n }  is bounded in probability. Motivated by this

result we suggest the transformation
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Using (4.2), a substitutional evaluation and an algebraic

simplification would facilitate the rewriting of (2.1) in the form
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where in the process   *ˆ
tZ  given ̂  is a stationary autoregressive

process. In view of the boundedness in probability of  )ˆ(  n  it
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is bounded in probability. This information, together with (4.3) and (4.4)

would ultimately help us to show that
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on appealing to standard convergence theorems.

These lead, on closely following the arguments in (Dickey and

Fuller, 1981, pp. 1065 and 1066), with reference to the process  *
t̂Y ,

that the least square estimator of (, , ) in (4.3) are asymptotically

distributionally equivalent to those of the equation (2.1).

5. Some Remarks on the Practical Utility of the

Proposed  Modification

A crucial assumption we have made is that one of the roots of

the model generating the time series is explosive, in the sense that it is

numerically larger than unity. Its justification, from practical point of view

can pose a methodological issue, especially when there is no standard

statistical test for testing the existence of an explosive root. Constructing
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such tests based on ̂ , may pose theoretical problems in view of different

rates of convergence and types of limits in distribution of  ̂  when  is

non-explosive or explosive or an unit root.  However the numerical value

of
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can be used for suspecting the presence of an explosive root. If,

1ˆ   the ADF test appears to be consistent with the null and alternative

that goes with it. However if 1ˆ  ,  the alternative appears to be logically

not correct in view of the possibility of  being larger than unity. The

exponential rate of convergence in probability of  ̂  to , suggests that,

is more likely to be larger than unity. Hence one can use it for identifying

the presence of an explosive root, even in moderately large samples,

although in small samples, there is a possibility of the effect of an explosive

root being mimicked by a polynomial trend which gets eliminated by

successive differences eventually.

It is pertinent to note that if 1ˆ  , any unit root test, particularly

the Augmented Dickey-Fuller (ADF) test, is more likely to accept the

hypothesis on the unit root, in which case, using  1ˆˆ
 ttt YYY   instead

of differencing can hasten the process of converting a non-stationary

time series into a stationary time series, as seen from the real example

that follows. It may be noted that  1ˆˆ
 ttt YYY   theoretically eliminates

the explosive root without affecting the presence or absence of the unit

10

root. Hence the suggested modification is useful even when there is no

unit root in P(z)=0, In case there are unit roots in P(z)=0 along with an

explosive root, one can apply the ADF test after removing the explosive

root so that the alternative hypothesis in the ADF test is then logically

correct when  the test rejects the null hypothesis. This, we believe,

enhances the practical utility of the ADF test in transforming the non-

stationary time series into a stationary one, effectively.

6.  An Illustrative Example

Towards illustrating the utility of the discussions so far, let us

consider the data on Indian Exports from 1970-71 to 2003-04 as reported

in Handbook of Statistics in Indian economy, RBI 2003-04. The increasing

nature of the data suggests non-stationarity of the time series. One can

easily note that ADF test accepts the unit root hypothesis as seen in the

following results summary on using MICROFIT. In the table ADF(n) is the

Augmented Dickey Fuller test with n difference components in the model.

The null hypothesis gets rejected whenever the test statistic is smaller

than the given critical values, at 5 percent level of significance.

TEST Statistic when there Statistic when there
is no trend  is a linear trend

ADF(1) 6.2012 3.1187

ADF(2) 3.8964 2.9900

ADF(3) 2.4874 2.0856

ADF(4) 2.3628 2.3706

Critical Value -2.9750 -3.5867
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Since the unit root hypothesis gets accepted, the results for the

once differenced series are given below:

TEST Statistic when there Statistic when there

is no trend  is a linear trend

ADF(1) 0.3000 -2.2023

ADF(2) 1.0920 -1.2490

ADF(3) 1.2729 -1.0203

ADF(4) 2.0356 -0.2837

Critical Value              -2.9750  -3.5867

Even at this stage the unit root hypothesis gets accepted and it

requires one more differencing to make the series stationary, at least

for the model with one lagged difference, as revealed by the following

table for the twice differenced series.

TEST Statistic when there Statistic when there

is no trend  is a linear trend

ADF(1) -4.1277 -4.0416

ADF(2) -2.7642 -2.7052

ADF(3) -2.4938 -2.4425

ADF(4) -1.7315 -1.6832

Critical Value              -2.9750  -3.5867

However, using the formula in (5.1) we get 153104.1ˆ   which

is numerically larger than unity suggesting the explosive nature of the

time series. Eliminating this root using the formula 1ˆˆ
 ttt YYY 

and applying the ADF test for the new series we have the following

summary.

12

TEST Statistic when there Statistic when there

is no trend  is a linear trend

ADF(1) -4.0971 -4.0019

ADF(2) -2.7366 -2.6676

ADF(3) -2.4548 -2.3966

ADF(4) -1.6965 -1.6436

Critical Value              -2.9750  -3.5867

The above table reveals that the explosive root eliminated series

is stationary, at least for the model under ADF(1) test. In fact, the result

indicates that there are no unit roots and suggests an AREXMA model -

ARMA model with an explosive root and with no unit roots - for the time

series.

7.   In Conclusion
It has been proved (Suresh Chandra, Manjunath and Vaman,

1999) that ̂  in (5.1) consistently estimates the largest explosive root ,

of P(z)=0. Consequently, whenever ̂ >1 one can expect, in large

samples, the modified series 1ˆˆ
 ttt YYY  , to eliminate the largest

explosive root (). One can easily extend the suggested procedure to

eliminate, successively, more than one explosive roots (distinct or

multiple), until the estimate (5.1), based on such successively modified

series is less than unity. In fact, all such estimates will have exponential

rates for their convergence in probability (vide Suresh Chandra et  al,

1999) as long as there is an explosive root.

Finally, the elimination of explosive roots before applying the

unit root tests not only hastens the process of removing non-stationarity



from a practical point of view (as seen in the illustration above), but also

validates the one sided assumption of the alternative hypothesis in them.

It is from this perspective the discussions in this paper gains its importance

in empirical time series analysis. The possibility of an alternative to ARIMA

modeling, as revealed in the illustration given above, can also be exploited.
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