Tariff-Rate Quotas

Difficult to model or plain simple?

Paper presented at the annual conference of the
New Zealand Agricultural and Resource Economics
Society

Working Paper 2001/7
ISSN 1170 2583

July 6-7 2001

NZ INSTITUTE OF ECONOMIC RESEARCH (INC.)
8 Halswell St. Thorndon
P O BOX 3479 WELLINGTON
Tel: (04) 472 1880
Fax: (04) 472 1211

The Institute, its contributors, employees and Board shall not be liable for any loss or damage
sustained by any person relying on this report, whatever the cause of such loss or damage.



July 6-7, 2001

Preface

The New Zealand Institute of Economic Research (NZIER),
based in Wellington, was founded in 1958 as a non-profit
making trust to provide economic research and consultancy
services. Best known for its long-established Quarterly Survey of
Business Opinion and forecasting publications, Quarterly
Predictions and the annual Industry Outlook with five-yearly
projections for 25 sectors, the Institute also undertakes a wide
range of consultancy activities for government and private
organisations. It obtains most of its income from research
contracts obtained in a competitive market and trades on its
reputation for delivering quality analysis in the right form, and
at the right time, for its clients. Quality assurance is provided
on the Institute’s work:

* Dby the interaction of team members on individual
projects;

* by exposure of the team’s work to the critical review of a
broader range of Institute staff members at internal
seminars;

* by providing for peer review at various stages through a
project by a senior staff member otherwise disinterested in
the project;

* and sometimes by external peer reviewers at the request
of a client, although this usually entails additional cost.

Authorship

This paper has been prepared by Phillip M. Bishop, Charles F.
Nicholson, James E. Pratt, and Andrew M. Novakovic.

Bishop is Senior Economist at NZIER (phil. bishop@nzier.co.nz);
Nicholson and Pratt are Senior Research Associates in the
Department of Applied Economics and Management, Cornell
University; and Novakovic is the E.V. Baker Professor of
Agricultural Economics in the Department of Applied
Economics and Management, Cornell University, Ithaca NY
14853-7801.

NZIER - Tariff-Rate Quotas



July 6-7, 2001

ABSTRACT

The “difficulty” of reliably and accurately incorporating tariff-rate quotas (TRQs) into
trade models has received a lot of attention in recent years. As a result of the Uruguay
Round of GATT negotiations, TRQs replaced an assortment of tariff and non-tariff
instruments in an effort to standardise trade barriers, and facilitate their future
liberalisation. Understanding the nuances of TRQs is now particularly crucial for
New Zealand because of the preferential access arrangements that New Zealand has
for a number of products in highly protected markets such as the European Union,
Japan, and the United States.

It has been argued that TRQs are complex instruments and are difficult to model
because for any trade flow between two countries, one of three regimes may be
applicable:

1. The import quota may not be binding and the within-quota tariff applies;

2. The quota may be binding, the within-quota tariff applies, and a “quota rent” is
created; or

3. Trade occurs over and above the quota, in which case an over-quota tariff applies
(although, even in this regime, someone is still able to collect the quota rent on
within-quota trade).

But even this characterisation, which many claim is too complex to model, is a major
simplification of reality. Bilateral preferences are ubiquitous, and such preferences are
usually included in the determination of multilateral market access quotas. It is usual,
therefore, that the TRQ instrument has several tiers to the quota schedule, plus a
number of within- and over-quota tariff rates applicable on either a bilateral or a
multilateral basis.

Further trade liberalisation creates something of a dilemma for New Zealand. Any
decrease in over-quota tariffs and/or increase in quota levels potentially reduces the
value of quota rents, many of which accrue to New Zealand due to the bilateral
preferences. It is important, therefore, that New Zealand trade negotiators understand
how much additional trade is required to offset the loss of New Zealand’s quota rents.
Modelling trade in the presence of TRQs is the only way to ascertain this knowledge.

The purpose of this paper is to show that complex TRQs can be modelled very easily
and precisely. The only catch is that the model must be formulated as a complementarity
problem rather than the more conventional linear or nonlinear optimisation problem.
The concept will be demonstrated using a simple 3-region, single commodity spatial
price equilibrium model of trade.

Keywords

Tariff-rate quota, trade modelling, mathematical programming, complementarity.
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1. INTRODUCTION

The use of tariff-rate quotas (TRQs) is widespread, especially in agricultural and other
primary sector trade policy settings. Because a significant share of New Zealand’s
exports derive from such sectors, understanding the nuances of TRQs as a trade policy
instrument is of critical importance. For example, one question of interest at present is
how further liberalisation of trade will impact New Zealand when the volume of that
trade is constrained by TRQs. Analysing the trade-off between diminished quota rents
and increased trade volumes is, potentially, a non-trivial undertaking. What’s more,
the problem is made even more difficult because the design and operation of most
TRQs is not as straightforward as simple textbook illustrations would imply.

Fortunately, many of the extant trade models can be reformulated as mixed
complementarity problems (MCPs). They are then capable of being used to analyse even
the most complex of TRQ instruments.

It is the purpose of this paper to demonstrate how complex TRQs can be effortlessly
analysed within the context of a model formulated as an MCP. There is little that is
original in this paper. Indeed, it draws upon a number of sources, in particular the
material found in the first 8 or 9 pages of Ferris and Munson (2000), and Rutherford
(1995). We hope the contribution of this paper is that some rather demanding material
is presented in a format that enables it to be accessed by an audience it would not
otherwise reach.

While the primary objective of the paper is to show how TRQs can be analysed, it also
has a secondary objective. That is, to explain some of the jargon associated with
optimisation models, mathematical programming, and complementarity, and to reveal
the role in the economist’s analytical toolbox of models that employ such concepts.

The paper is organised as follows. We begin with what we call a 10-minute tour
through optimisation theory. This section culminates with a brief discussion of the
Kuhn-Tucker conditions, which enables us to then motivate the complementarity
problem. We then change tack and present a series of small models. We start with a
simple transportation problem and work up to a spatial price equilibrium model
formulated as a mixed complementarity problem, which is coded using the GAMS
software. The next section discusses the tariff-rate quota as a policy instrument. We
conclude the paper by bringing it all together, incorporating tariff-rate quotas into a
simple 3-region, single commodity trade model.

We make extensive use of snippets of GAMS code to demonstrate the models
presented in this paper (Brooke et al., 1998). The models presented herein are well
within the dimension limitations of the free version of the GAMS software that can be
downloaded from www.gams.com.

Finally, we are aware that readers of this paper might be encountering some of this
material for the first time. Hence, we tend to repeat ourselves in order to continually
reiterate the key points. We hope that this is helpful rather than annoying.

NZIER - Tariff-Rate Quotas 1
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2. A10-MINUTE TOUR OF OPTIMISATION

2.1 Introduction

Fundamental to most economic analysis is the notion of optimisation; consumers make
choices so as to maximise utility, firms seek to maximise profits, nations search for
ways to maximise GDP growth, and so on. Moreover, such optimisation problems
usually have constraints associated with them. For example, consumers maximise
utility subject to a budget constraint. In this paper we focus on models that find
optimal solutions to economic problems. The key tools employed to do this fall under
the rubric of mathematical programming. To be quite clear at the outset, we are not
talking about statistical, or econometric, models, and nor are we talking about a set of
simple accounting or arithmetic relationships that might be found in a spreadsheet
application.

The purpose of this section is to very quickly introduce a few of the key concepts found
in mathematical programming.' Later in the paper, we will use examples of simple but
realistic models to further scrutinise these concepts. For now we are simply interested
in establishing a convenient starting point, and in introducing some of the jargon.

2.2 Unconstrained optimisation

The simplest type of optimisation problem is one where we wish to find the extreme
value (either a minimum or a maximum) of some function. In actual fact, a problem
this simple does not even require the tools of mathematical programming; the classical
techniques of differential calculus are all that is required.

Consider the following long-run average cost function:
AC = f(Q)=0* =50 +8 1)

Here we have a quadratic function, which when plotted will reveal a U-shaped curve
with its lowest point occurring when Q = 2.5. In other words, when Q = 2.5, AC will
equal 1.75, representing the lowest value that this long-run average cost function can
obtain. In this particular problem, we say that AC = f(Q) is the objective function and Q
is the choice variable, or decision variable. There are no constraints to this problem,
which implies we have an unconstrained optimisation problem. If our interest is in
minimising the long-run average cost, then our task is to choose the appropriate level of
the decision variable, Q, that is consistent with the objective function yielding its
lowest possible value. We would follow the same procedure if there were more than
one decision variable or if the problem was one to be maximised.

As an aside, one may restrict the domain of Q to be non-negative as it would make no
sense to contemplate producing a negative amount of Q. However, we don’t have to
think of such a restriction as a constraint.

The standard approach to solving an unconstrained optimisation problem is to use the
tools of differential calculus. In the case of our long-run average cost function, it will be
recalled from high school calculus that we simply take the first derivative, set it equal

There are many good textbooks offering a comprehensive treatment of mathematical programming
and its underlying theory. A gentle introduction is: Chiang, A. (1984). Fundamental methods of
mathematical economics (3" edition), McGraw-Hill. Indeed, much of the material in this section on
optimisation theory is drawn directly from Chiang.

NZIER - Tariff-Rate Quotas 2



July 6-7, 2001

to zero, and solve for the level of Q. For example, letting f(Q) denote the first
derivative of f, we have:*

f1(Q)=20-5 )
which, when set equal to zero, yields Q = 2.5.

This problem is easy because the function is quadratic, which means that it only has
one turning point. A slightly more complicated problem is a cubic function, which has
two turning points. For example,

y=f(x)=x"—12x> +36x —8 3)

Taking the first derivative and setting it equal to zero yields two “roots”, or levels at
which f/(x) = 0; namely x = 2 and x = 6. But now we need to determine which of these
roots is associated with the maximum point and which is the minimum — we know that
a cubic function will have one of each. We do this by taking the second derivatives, i.e.
the first derivative of the first derivative. Armed with this information, we can then
determine which way the function, f(x), is turning as x approaches 2 and 6. In other
words, is the function concave or convex at these points? We will cease this exposition
at this point as it can be reviewed in any elementary calculus textbook. Suffice it to say
that the theory of unconstrained optimisation generalises to nth-degree polynomial
functions.

Before turning to constrained optimisation though, it is worth noting a couple of final
points. First, one needs to be careful about referring to extreme points as maximum or
minimum points of the primitive function. They should more properly be referred to as
relative (or local) extrema, as a function may have several extreme points, some of which
may be maxima while others are minima. Only one of each can be the global (in contrast
to the local) maximum or minimum. And some points at which the first derivative
equals zero may fall into a third category, points of inflection.

Second, differential calculus has been used to derive a universal set of necessary and
sufficient conditions. These conditions, or rules, can easily be applied to any function
to determine the status of all stationary points. That is, all points where the first
derivative or the slope of the function is zero. The necessary conditions are based on
the first derivatives and are therefore referred to as the first-order conditions. Likewise,
the sufficient conditions are based on the second derivatives, and are referred to as
second-order conditions.

2.3 Optimisation with equality constraints

It is nearly always the case in economics that some limiting factor(s) impinges upon the
choices we are able to make when trying to solve any given optimisation problem. An
obvious example is when firms set out to maximise profits; they are constrained by the
need to employ the available technology. Hence it is necessary to have a technique
available for solving constrained optimisation problems. The standard method is that of
Lagrange multipliers. The essence of the Lagrange multiplier method is to convert the
constrained optimisation problem into a form where the first-order conditions of the
unconstrained problem can still be applied.

By way of example, consider the utility function

U =xx, +2x (4)

2 Whereas f’is termed the derivative function, the original function, f, is sometimes referred to as the

primitive function.
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and the budget constraint given by
4x, +2x, =60 )

The first step in employing the method of Lagrange multipliers is to write down what
is termed the Lagrangian function:

Z =x,x, +2x, +A(60 —4x, —2x, ) (6)

This is nothing more than a modified version of the primitive objective function that
incorporates the constraint (or constraints if there is more than one).’ Z is now the
objective function value, i.e. the value we are trying to optimise (maximise in this case).
The symbol A is called the Lagrange multiplier and represents an as yet undetermined
number. Notice how the constraint was rearranged when we wrote out the Lagrangian
function. If we can be assured that the constraint will be satisfied, then the expression
inside the brackets in our Lagrangian function goes to zero, and the entire last term of
equation (6) vanishes, regardless of the value of A. With the constraint thus dispensed
with, we could then seek the free (unconstrained) value of Z in lieu of the constrained
value of U. The question, then, is how do we make the term in parentheses in equation
(6) vanish?

The tactic employed by the method of Lagrange multipliers is to treat A as an
additional variable in (6). That is, consider Z to be a function not only of x; and x,, but
also of A, e.g. Z = Z(A, x1, X). The first-order conditions for the free extremum

(i.e. maximum in this case) will now consist of a set of simultaneous equations:

Z,=0Z/0A =60 —4x, —2x, =0
Z, =0Z/0x, =x, +2—4A =0 (FOC 1)
Z,=0Z/0x, =x, —2A =0

So, by taking the first derivative of Z with respect to each of the three variables, and by
setting each derivative to be equal to zero, we have generated the first-order
conditions. They are nothing more than a set of 3 unknowns and 3 equations. But
significantly, the first of the three equations in (FOC 1), i.e. Z,, gives us the assurance
that the last term in equation (6) will vanish. It is a simple matter to solve this system
and find that A = 4, x; = 8, and x, = 14.* Putting these values into equations (6) and (4)
yields, respectively, Z =128 and U = 128.

For our present purposes, we need not take this discussion any further; we are now
ready to consider problems with inequality constraints. Chapter 12 of Chiang (1984)
covers optimisation with equality constraints in much greater detail and is worth
reviewing. For example, it covers such topics as the interpretation of the Lagrange
multiplier, the n-variable and m-constraint case, second-order conditions, and the
significance of testing for concavity and convexity.

2.4 Optimisation with inequality constraints

Thus far in our quick tour through optimisation theory we have been able to confine
ourselves to using the methods of classical optimisation, i.e. techniques based on

When there is more than one constraint, the Lagrangian function would have a distinct A associated
with each one.

For example, rearrange Z, to yield A = 0.5x;. Then substitute this expression for A into Z; yielding x,
+ 2 -4(0.5x;) = 0. Rearranging this gives x, = 2x; — 2, which we can then substitute into Z,. Rearranging
the result of that gives us x; = 8. If x; = 8, then Z, must imply that A = 4, and finally, putting A = 4 into Z,
reveals that x, = 14.

NZIER - Tariff-Rate Quotas 4
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differential calculus. In order to tackle problems with inequality constraints, and for
some other reasons that will become obvious shortly, we now need to move into the
realm of nonclassical methods. Mathematical programming, which includes (among
other topics) linear programming, nonlinear programming, and complementarity
methods, is the name given to this collection of nonclassical solution techniques.
Clearly the introduction of inequality constraints enables more interesting and realistic
problems to be contemplated.

The specific models we get to later in the paper deal with problems containing
inequality constraints. Hence we will not belabour their presentation at this juncture.
What we wish to do in this section is introduce the Kuhn-Tucker conditions, and then
provide a brief introduction to the mixed complementarity problem.

The types of problems encountered in classical optimisation have three key
characteristics:

* They contain no explicit restrictions on the sign of the choice variables;
* They contain no inequality constraints; and

* The first-order conditions for a relative or local extremum is simply that the first
partial derivatives of the Lagrangian function with respect to all choice variables
and the Lagrange multipliers be zero. In other words, we are restricted to situations
where there are no boundary or corner solutions. Stated differently, we have only
interior solutions.

Mathematical programming methods enable us to find solutions to problems where
one or all of these characteristics are not present.

2.4.1 The Kuhn-Tucker conditions

The single most important result in nonlinear programming is the Kuhn-Tucker
conditions (Kuhn and Tucker, 1951). These conditions can be thought of as the
nonlinear programming equivalent of the classical first-order conditions. As we shall
see, the Kuhn-Tucker method generalises the first-order conditions for an equilibrium to
a set of boundary conditions for finding an equilibrium. But unlike those classical
conditions, the Kuhn-Tucker conditions cannot be accorded the status of necessary
conditions, unless a certain proviso is satisfied.” However, in specific circumstances,
the Kuhn-Tucker conditions turn out to be sufficient conditions, or even necessary and
sufficient conditions as well.

At this point we are going to do little more than present the derivation of the Kuhn-
Tucker conditions. Their relevance will become clearer later in the paper. Our primary
reason for presenting them at all is because they provide a bridge from the theory of
constrained optimisation to the mixed complementarity problem.

Consider the following generic optimisation problem, which incorporates two
constraint functions and explicit nonnegativity conditions:

That proviso is called the constraint qualification. It imposes a certain restriction on the constraint
functions of a nonlinear program so that irregularities on the boundary of the feasible set don’t
invalidate the Kuhn-Tucker conditions, should the optimal solution occur at that boundary. While the
constraint qualification is important to the theory of nonlinear programming, and to the Kuhn-Tucker
sufficiency theorem, we are not going to discuss it in this paper. A nonlinear programming text should
be consulted for further information.

NZIER - Tariff-Rate Quotas 5



July 6-7, 2001

Maximise — 7T= f(xl,xz,x3)

subjectto  g'(x,,x,,x;) <r,
2( 1 2 3) 1 (NLPl)
g (xl’x2’x3)sr2

X, X,,%x, =0
We can imagine that f and g', say, are nonlinear functions. Hence we call this problem

(NLP 1) for NonLinear Program. As before, we can write the Lagrangian function for
this problem:

A :f(xl,xz,x3) +/\1(”1 —gl(xl,xz,x3)) +/\2(”2 —gz(xl,xz,x3)) )

The resulting Kuhn-Tucker conditions can be stated compactly as follows (or more
accurately, one version of the Kuhn-Tucker conditions, expressed in terms of the
Lagrangian function Z, can be stated this way):

gx—zso, x, =0, and x]gx—zzo 0j=123

g wry
=20, X=0, and X o= Oi =1,2

X X

What do these six expressions comprising the Kuhn-Tucker conditions tell us?

First of all, two of the six expressions are nothing more than a restatement of parts of
the original problem, i.e. x; 2 0 simply restates the nonnegativity conditions for the
three primal variables. Similarly, Z/0\' = 0 reiterates the constraints, i.e. one such
condition for each of the two constraints. But notice that associated with each variable
type, i.e. the choice variables (x;)) and the Lagrange multipliers (\'), there is a
corresponding marginal condition that must be satisfied by the optimal solution.’

Finally, there is what is known as the complementary slackness conditions, i.e. the last
two expressions on each line of (KT 1), which simply state that the product of two
terms must equate to zero. In other words, each variable is characterised by
complementary slackness in relation to a particular partial derivative of the Lagrangian
function Z. And what does this mean? It means that for each x;, we must find in the
optimal solution that either:

* The marginal condition holds with a strict equality (as in the classical context); or
* The choice variable in question must take on a zero value; or
* Both of the above.

Analogously, for each N, we must find in the optimal solution that either the associated
marginal condition holds as an equality — meaning that the i" constraint is satisfied
exactly — or the Lagrange multiplier vanishes, i.e. becomes zero, or both.

It is by exploiting the complementary slackness conditions that it becomes possible to
find corner or boundary solutions. Of significance in the case of models that explicitly
incorporate tariff-rate quotas, it is the property that enables endogenous regime
switching to occur. In fact, short of exploiting complementary slackness, there exists no

In case it is not yet apparent, it is worth noting at this point that the first-order conditions, of both
constrained and unconstrained optimisation problems, describe a set of equations that must hold true at
the equilibrium or optimal solution. They are sometimes thus referred to as the first-order equilibrium
conditions. So, we have two ways to describe the problem; the underlying optimisation problem, and a
set of conditions that characterise (i.e. must hold true) a solution to the underlying optimisation
problem.

NZIER - Tariff-Rate Quotas 6
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other way to explicitly model such behaviour.” We will return to this point later.

Before we turn to the mixed complementarity problem, we would point out that the
Kuhn-Tucker conditions give rise to a natural economic interpretation. The Lagrange
multipliers can be regarded as shadow prices. Thus, the Kuhn-Tucker conditions tell us
that, in an optimal solution, when a constraint holds with a strict inequality, then by
complementary slackness, the associated shadow price must be zero. Similarly, if an
activity level (e.g. a primal variable) is strictly greater than zero, then the associated
marginal condition must hold with a strict equality. We will return to this in some
detail shortly.

2.4.2 The Mixed Complementarity Problem (MCP)

Now that we have understood the Kuhn-Tucker conditions, we are ready to examine
complementarity. A nonlinear complementarity problem consists of a system of
simultaneous (linear or nonlinear) equations that are written as inequalities and are
linked to bounded variables in a manner that encapsulates complementary slackness
relationships. In a mixed complementarity problem (MCP), the equations may be a
mixture of inequalities and strict equalities. For more rigorous details and a
mathematical definition, see Rutherford (1995).

It is possible to rewrite (KT 1) in accordance with this definition, and thereby transform
(NLP 1) into an equivalent MCP. However, the generic nature of the problem specified
in NLP 1 means that the expression for the equivalent MCP may well be confusing for
the novice. To avoid this possibility, we would prefer to derive an MCP using a specific
example, and shall do so shortly.

Before leaving this section, however, we would make a few general comments relating
to MCPs.

The underlying theory of complementarity, and the closely related variational inequality
was developed in the 1960s, e.g. see Cottle et al., 1992; Lemke and Howson, 1964;
Hartman and Stampacchia, 1966. For a thorough review, see Harker and Pang (1990). It
was not until much later that commercially available algorithms capable of solving
large scale complementarity problems became available, e.g. see Rutherford (1993) and
Dirkse and Ferris (1993). The solver we use is called PATH (Dirkse and Ferris, 1993),
which is seamlessly linked with the GAMS modelling software (Brooke et al., 1998).

As noted earlier, the equilibrium conditions that characterise an underlying
optimisation problem are an alternative way of expressing that problem. But there are
some problems that can be formulated as an MCP for which there is no equivalent
underlying optimisation problem. Such problems arise frequently in economics. Hence,
the MCP offers the modeller greater choice and flexibility than traditional NLP
formulations. A pertinent case in point is the explicit treatment of tariff-rate quotas,
which requires a modelling framework able to handle regime switching. For a
description of the conditions that give rise to the lack of equivalence between NLPs
and complementarity problems, and for some common examples, see Nicholson et al.
(1994) and Nagurney et al. (1996a). For a similar discussion in the context of general
equilibrium modelling, see Lofgren and Robinson (1999).

There are, of course, techniques for approximating regime switching that don’t require
complementarity.

NZIER - Tariff-Rate Quotas 7
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3. MULTI-REGION MODELS"

3.1 Introduction

Having reviewed, albeit very briefly, the theory underlying optimisation, we now turn

to some specific examples. Our purpose here is twofold:

* To practically demonstrate what we’ve been talking about in the previous section;
and

* To develop a realistic but simple model that incorporates tariff-rate quotas.

Whether a problem is formulated as a traditional NLP (of which linear problems are
just a special case) or as an MCP, it is necessary to be able to then find a solution to the
problem. Only in the most trivial of cases will the method of substitution and
elimination, which we used earlier, be helpful. The most popular means of specifying
and then solving the types of problems we are concerned with here is the GAMS
modelling software. GAMS, which stands for General Algebraic Modelling System,
employs a syntax that results in a model representation that is easily understood by
humans, as well as computers. It also incorporates (is internally linked to) many well-
known commercial solvers, which enables almost any problem type to be solved.
Hence, the models we now present will be depicted in GAMS format.

3.2 A simple transportation problem

The transportation problem, formulated simultaneously and independently by
Kantorovich (1939) and Hitchcock (1941), is the starting point for the partial
equilibrium literature. The canonical problem of this genre, popularised by Dantzig
(1963) and solved using linear programming (LP) algorithms, is depicted in Figure 1.

Here we have a problem where the objective is to minimise the transportation cost of
shipping a single homogeneous good from one set of regions or cities (points in space)
to a second set of regions. To make the problem very simple, supply and demand is
fixed, i.e. it does not respond to price. In other words, the problem is to satisfy the fixed
demands (of 275, 300, and 375 at Topeka, Chicago, and New York, respectively) from
the fixed supplies (of 350 and 600 at Seattle and San Diego, respectively), at the least
cost.

The transportation cost is specified to be a linear function of distance. Specifically, it is
$90 per case per thousand miles. The values on the arcs in Figure 1 denote the distance
in miles between each pair of cities, while the number in parentheses is the
transportation cost in thousands of dollars per case. Notice that in total there is excess
supply; there are 950 cases available for supply, while the total fixed demand is only
900 cases.

We focus on multi-region models in this paper. It should be understood, however, that the same
concepts apply to products (or sectors or markets) and time. In other words, the practical analysis of
space, form, and time amounts to much the same thing.

NZIER - Tariff-Rate Quotas 8
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Figure 1 Dantzig’s transportation problem

Seattle
350

2500 (0.225)

1700 (0.153)

Chicago
300

1800 (0.162)

1800 (0.162)

1400 (0.126)

2500 (0.225)

Source: Dantzig (1963), NZIER.

In keeping with the style of the previous section, we can state this problem
algebraically as follows:
Minimise > > ¢;x;
7
subject to X, =<s, i
Z ’ (LP 1)
ny. =d, my;

X, =0

Alternatively, we can write the model using GAMS (see Figure 2).

Except for the line numbers, which have been added for expositional convenience, the
code in Figure 2 is literally a GAMS program. Not only does it include the algebraic
description of the model, lines 36 through 40, it also contains the data used to
parameterise the model. Specifically, lines 1-3 specify the sets, or indices, on which the
problem’s parameters, variables, and equations are defined, i.e. set i denotes the supply
points (Seattle and San Diego), while set j denotes the three demand points. Lines 5
through 13 declare the two parameters, s; and d;, and also assigns values to these
parameters. It ought to be apparent that s; denotes the supply quantities of 350 and 600
available at Seattle and San Diego, respectively. Likewise d; denotes the demand
quantities. Lines 15-18 produce a table of distances that is subsequently used in line 23
to calculate the shipping cost associated with each of the six arcs or routes.

Lines 25-29 declare the variables. Note that z is just the objective function value. Also
note the command in line 29; it is the GAMS-equivalent of specifying the non-
negativity condition on the variable x;.

Lines 31 through 34 declare the equations contained in the model, while lines 36-40
specify the algebra of each equation. In GAMS, =e= means strictly equal to, =l= means
less than or equal to, and =g= means greater than or equal to (the <, =, and = signs are
reserved for use in assignment statements). The command in line 42 simply says take
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all of the equations that have been specified and use them to create a model called
transport. Line 44 tells GAMS to solve the model called transport using the LP solver.
In other words, the user is telling GAMS that this model is an LP problem.

Figure 2 GAMS code for Dantzig’s transportation problem

1 Sets

2 i canning plants / seattle, san-diego /

3 j markets / new-york, chicago, topeka /;
4

5 Parameters

6 s (i) capacity of plant i in cases

7 /seattle 350

8 san-diego 600 /

9

10 d(j) demand at market j in cases

11 /new-york 325

12 chicago 300

13 topeka 275 /;

14

15 Table dist(i,j) distance in thousands of miles

16 new-york chicago topeka
17 seattle 2.5 1.7 1.8
18 san-diego 2.5 1.8 1.4 ;
19

20 Scalar f freight in dollars per case per thousand miles /90/;
21

22 Parameter c(i,j) transport cost in thousands of dollars per case;
23 c(i,j) = £ * dist(i,3j)/1000;

24

25 Variables

26 x(1,3) shipment quantities in cases

27 z total transportation costs in thousands of dollars ;
28

29 Positive Variable x;

30

31 Equations

32 cost define objective function

33 supply (i) observe supply limit at plant i

34 demand (j) satisfy demand at market j ;

35

36 cost.. z =e= sum((i,J), c(i,J)*x(i,3));

37

38 supply (i) .. sum(j, x(i,3)) =1= s(i);

39

40 demand (j) .. sum (i, x(i,3)) =g= d(3);

41

42 Model transport /all/;

43

44 Solve transport using lp minimizing z;

Source: GAMS model library (trnsport.gms), www.gams.com.

To recap, what we have specified here is a linear programming problem. An LP is a
special case of the NLP class of problems where both the objective function and all of
the constraints are linear. Incidentally, if the objective function was quadratic and the
constraints were linear, then we would have a problem known as a quadratic
programming (QP) problem. LP and QP problems are significant from an algorithmic
point of view because specialised solvers are able to solve these problems much more
quickly than general NLP solvers can. An NLP may have an objective function that
contains nonlinearities of a higher order than quadratic. It may also have linear or
nonlinear constraints, or a mixture of both.

Finally, for the sake of completeness, we should point out that a pure transportation
problem such as (LP 1) need not be formulated as an LP problem in order to find a
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solution; there is another whole class of problems called network problems, for which
very fast solution algorithms have been designed.

A solution to this problem will generate the quantities shipped (defined by city of
origin and destination). The objective, as already noted, is to minimise the total
transportation cost. The only constraints to this simple problem are that shipments
must be non-negative (they may be zero along a particular route); the supply cities
cannot ship more than they have available to ship; and the total quantity of shipments
into a demand city must be at least as great as the fixed amount demanded at that city.
Given that each case of the good shipped incurs a positive cost, we would expect that
this last constraint will be satisfied with a strict equality, i.e. the quantity shipped into a
city will exactly equal the quantity demanded at that city.

The solution is as follows:

 Ship 300 cases from Seattle to Chicago;

» Ship 325 cases from San Diego to New York; and
 Ship 275 cases from San Diego to Topeka.

The total transportation cost, z, will be $153,675. This represents an optimal solution,
which means that given the fixed supplies, it is not possible to satisfy the fixed
demands at a lower total cost. Note that the excess supply of 50 cases remains at
Seattle. This problem actually has more than one optimal solution. The per unit
shipping cost is identical along both the Seattle-New York and the San Diego-New
York routes. Hence, an equally optimal solution would have been the same as above
except Seattle could have shipped 50 cases to New York while San Diego could have
shipped 275 cases to New York, instead of 325. In this alternative optimal solution, the
total transportation cost would still be $153,675 but the excess 50 cases would be
located at San Diego.

Finally, formulating and solving this problem as an LP yields two other pieces of
valuable information; the shadow price associated with each of the constraints and the
marginal cost associated with each variable. While the solution technique enables this
information to be generated, it is important to understand that these values, i.e. the
shadow prices and the marginal costs, are not explicit variables in the problem being
solved.

The shadow prices associated with the two supply constraints are zero. This should not
be a surprise as there is excess supply in this problem. The shadow prices represent the
value of relaxing the constraint. In other words, how much would the objective
function value, z, change if we had one more case at either Seattle or San Diego? The
answer is zero because demands are fixed and another case available for supply
therefore has no value — anywhere. Recall that the shadow prices are akin to the
Lagrange multipliers.

The shadow prices associated with the three demand constraints are 0.225, 0.153, and
0.126 at New York, Chicago, and Topeka, respectively. What does this mean? Consider
the New York demand constraint. If New York required 326 cases, i.e. one more than is
currently specified, then the objective function value would increase by 0.225 (or,
equivalently, the total transportation cost would go up by $225). This, it can be seen, is
nothing more than the cost of getting another case from Seattle, the point at which
there exists excess supply.

The marginal costs associated with the six variables are zero, except for along the
Seattle-Topeka arc where it is 0.036, and along the San Diego-Chicago arc where the
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marginal cost is 0.009. What does this mean? It means that it is optimal to send
nothing from Seattle to Topeka and from San Diego to Chicago. But if you insisted on
sending just one case along these arcs, it would add $36 and $9, respectively, to the
optimal (minimum) total transportation cost.

3.3 The transportation problem as a Linear Complementarity
Problem (LCP)?

There is no compelling reason why the transportation problem shown above should be
formulated and solved as a complementarity problem. Nevertheless, we will do it so as
to explicitly relate the complementarity problem back to a simple LP. We will then
move on to a model that includes price responsive supply and demand functions.

Consider the simple transportation problem as specified in (LP 1). As we’ve just seen,
this problem can be solved as a linear program. But let’s go back to the theory we
discussed earlier. The derivation of the optimality conditions for this problem begins
by associating with each constraint a multiplier, alternatively termed a shadow price or
dual variable. These multipliers represent the marginal price on changes to the
corresponding constraint. Instead of the As we used earlier, let’s label the prices on the
supply constraint p® and those on the demand constraint p°.

Intuitively, for each supply node i we have:

0<p’ and s, = ]ny, ®)

In other words, supply prices cannot be negative and the quantity available for supply
at a particular location must be greater than or equal to the sum of all shipments out of
that location.

Consider what happens when s; > 3jx;;, i.e. supply is strictly greater than the sum of the
shipments. In a competitive setting, no rational person would be willing to pay for
more supply at location i; it is already oversupplied. Therefore p® at that location
would be zero. Alternatively, when s; = Zx;, that is the market clears, one might be
willing to pay for some additional supply of the good. Therefore p* =2 0. We can write
these two conditions succinctly as:

0<p’ Os, = Jini i )

where the “[J” symbol is understood to mean that at least one of the adjacent
inequalities must be satisfied as a strict equality, i.e. either p* = 0 or s; = Zx;. This is
nothing more than a formal statement of the complementary slackness result that we
saw earlier when presenting the Kuhn-Tucker conditions.

We can go through a similar logic with respect to the demand markets and derive the
complementarity relationship:

0<pf szii =zd; U (10)

In other words, if shipments into a demand location were to exceed the quantity
demanded, then we’d expect the demand price to be driven down to zero.

Also, from basic intuition, we know that the supply price at i plus the transportation

2 Not counting the objective function variable, z, whose marginal cost is zero, there are six variables

in this model, i.e. i = 2 times j = 3 equals 6, and x is defined on i and j.

: This section draws heavily on Ferris and Munson, 2000.
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cost ¢ from i to j must exceed the market price at j:
P *e; =pj (11)

This, as we'll see later in the paper, is just a statement of a simple spatial price
equilibrium (SPE) condition. If this condition was not true, then in a competitive
market place, another producer could replicate supplier i and thereby increase the
supply of the good, which in turn would drive down the market price. This process
would continue until the inequality condition (11) was restored. Furthermore, if (11)
held with a strict inequality, i.e. the cost of delivery (supply price plus the
transportation cost) exceeded the market price, then nothing would be shipped from i
to j because doing so would incur a loss. In such a circumstance, it is clear that x; = 0.
Therefore,

0<x, Op; +c, =zp? [/ (12)
We can combine (9), (10), and (12) into a single problem:
O=p’ Os, = x, )

0<p/0O>x,=zd, [ (LCP 1)
s d ..
0=x, Up; +¢; = p;] L, j

(LCP 1) defines a linear complementarity problem that should, by now, be easily
recognised as the complementary slackness conditions associated with (LP 1). For
linear programs, the complementary slackness conditions are both necessary and
sufficient for x (a 6 by 1 vector) to be an optimal solution to (LP 1).*

Looking a little more carefully at (LCP 1) we can gain further insight into
complementarity problems. A solution to (LCP 1) not only tells us how much to send
along each route, it also specifies the routes to be used. This property represents the
key contribution of a complementarity problem over a system of equations.’ If we
knew a priori which routes to use, we could solve a simple system of equations to find
the quantity to ship along each route. However, the key to the modelling power of
complementarity is that it chooses which inequalities to satisfy as equalities.

We can therefore exploit this property and generate models with different regimes and
let the solution determine which ones are to be active. A frequently used example of
this can be found in the economics literature relating to climate change and the
atmospheric accumulation of greenhouse gas. It is common in that literature to see
modelled a “backstop” technology such as windmills that becomes active once the
price of traditional energy sources have reached a certain threshold level, following the
introduction of carbon taxes.

In Figure 3 we present the GAMS code to specify and solve (LCP 1). Up until line 25, it
is identical to the LP specification shown in Figure 2. The key differences between
Figure 2 and Figure 3 are as follows.

4 If the reader is confused at this point, we suggest returning to the section presenting the Kuhn-

Tucker conditions. The Kuhn-Tucker conditions and the complementarity problem contain essentially
the same information.

As noted earlier, (LP 1), when solved as a linear programming problem, also tells us which routes
to use. There is thus no compelling reason to use a complementarity formulation for such a simple
problem. But there are many instances when economic problems can’t be solved using traditional LP or
NLP techniques. In such cases, the available options are to solve a system of equations representing the
equilibrium conditions for the underlying optimisation problem, or to formulate and solve the problem
as a complementarity problem.
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Figure 3 GAMS code for a linear complementarity problem

1 Sets

2 i canning plants / seattle, san-diego /

3 b markets / new-york, chicago, topeka /;
4

5 Parameters

6 s(i) capacity of plant i in cases

7 /seattle 350

8 san-diego 600 /

9

10 d(7j) demand at market j in cases

11 /new-york 325

12 chicago 300

13 topeka 275 /;

14

15 Table dist (i, ]) distance in thousands of miles

16 new-york chicago topeka

17 seattle 2.5 1.7 1.8

18 san-diego 2.5 1.8 1.4 ;
19

20 Scalar f freight in dollars per case per thousand miles /90/;
21

22 Parameter c(i,j) transport cost in thousands of dollars per case;
23 c(i,j) = £ * dist(i,3)/1000;

24

25 Positive Variables

26 x(1i,3) shipment quantities in cases

27 p_supply (i) shadow price at market i

28 p _demand(j) shadow price at market j ;

29

30 Equations

31 supply (1) observe supply limit at plant i

32 demand (J) satisfy demand at market j

33 zprofit(i,j) =zero profit condition ;

34

35 supply (i) .. s(i) =g= sum(j, x(i,3));

36

37 demand (j) . . sum (i, x(i,3J)) =g= d(3j);

38

39 zprofit(i,j).. p_supply(i) + c(i,J) =g= p demand(]);
40

41 Model transport /zprofit.x, supply.p supply, demand.p demand/;
42

43 Solve transport using mcp;

Source: GAMS model library (transmcp.gms), www.gams.com.

The LCP has no objective function so there is no need for an objective function variable,
i.e. the variable z in the LP specification. But the shadow prices seen in the solution to
the LP model are explicitly included as variables in the LCP. Hence, the variables that
we earlier called p°® and p® are included in the LCP GAMS code as p_supply(i) and
p_demand(j), respectively. The spatial price equilibrium condition, equation (11)
above, is included in the LCP model as the equation called zprofit(i,j). As described
earlier, this is the condition that, in a competitive setting, will cause profits over and
above a firm’s normal profit to be driven to zero. Hence the name “zero profit
condition”. One can think of this condition as an arbitrage condition, i.e. the potential
for an agent to profitably exploit non-equilibrium situations is sufficient to drive the
market back to an equilibrium.

Notice the “Model” statement in line 41. Whereas the LP model simply assigned “all”
equations to the model called “Transport”, the LCP model requires a different

£“ 7

approach. Specifically, the “.” takes the place of the “[” symbol, which we used earlier
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in (LCP 1). So, line 41 specifies that the variable x is complementary to the equation
called zprofit. Likewise, the variable called p_supply is complementary to the equation
called supply and the variable called p_demand is specified to be complementary to
the equation called demand. It is important to note that the modeller must explicitly
specify the complementarity pairings in order for the solver to exploit this information.
Simply formulating a model that contains arbitrage conditions, such as (11), in an NLP
setting is not the same as exploiting complementarity.

Finally, the “Solve” statement in line 43 is differs in two ways from that in the LP
model. First, we need to tell GAMS that this is an MCP class of model, and not an LP.
And as a consequence of this, there is no need to specify an objective function value to
be minimised (or maximised).

A solution to this problem will generate the quantities shipped (defined by location of
origin and destination), and supply and demand prices, i.e. both prices and quantities
are variables, unlike in (LP 1). Both price and quantity variables may be zero, i.e. the
model endogenously selects the appropriate regime that satisfies the model and its
constraints.

The economic question contained herein is what quantity should be shipped between
each supply and demand point so as to minimise the overall transportation cost? The
answer to this question describes the regime determined by the model’s solution. For
markets, i.e. combinations of supply and demand points, the regime is either one of full
utilisation with a positive market clearing price, or excess supply with a zero price. For
the arcs, i.e. the transportation flows, the regime is either one of active links associated
with a positive shipment, or inactive links and a zero flow. The solution may be
viewed as a market equilibrium, albeit subject to the restrictive assumption of fixed,

i.e. non-price responsive, supply and demand quantities.

Not surprisingly, the solution to the LCP is identical to the solution of the LP problem.
To reiterate though, the prices are explicit variables in the LCP formulation, whereas
the LP model yields prices only implicitly. This points to some of the flexibility
available from the LCP formulation compared to the LP model. For instance, in the
LCP (or the MCP) setting, it is a straightforward matter to directly simulate policies
that operate on prices, e.g. agricultural support prices.

3.4 Adding price responsive behaviour

The spatial price equilibrium (SPE) model is something of a workhorse in trade and
interregional analysis. A simple formulation of an SPE model is just the transportation
problem with its fixed supplies and demands replaced with price responsive supply
and demand functions. In this section, we describe a little of the background to the SPE
model, and then amend (LCP 1) so that it incorporates price responsive behaviour. To
keep things uncluttered we will assume that quantity is a simple function of own price,
i.e. all conceivable cross-price terms are zero. Once we have explored the specification
of the SPE model formulated as a complementarity problem, we will be in a position to
then add tariff-rate quotas to the model.

Enke (1951) and Samuelson (1952) were the first to extend the transportation model by
introducing price responsive regional supply and demand functions. Samuelson’s
formulation shows that the problem of maximising “net social payoff” (the sum of
consumers” and producers’ surpluses in each region less transportation costs) subject to
regional commodity balance equations generates a set of optimality conditions that
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define an equilibrium in each regional market.® Given the significance of Samuelson’s
contribution, it is worth dwelling on this for a moment.

Imagine a three region model where each region both supplies and demands a single
good. Further imagine that the cost structures and consumer preferences are
sufficiently different in each region that they engage in trade in order to maximise
welfare. In a graphical sense, it is easy enough to picture the area denoting producer
and consumer surplus in each region. The transportation cost is simply the quantity
traded between each pair of regions multiplied by the appropriate transportation cost.

Samuelson’s innovation was that if we simply set out to maximise the sum, over all
regions, of the producers” and consumers’ surplus, less the total transportation cost,
and observed the supply and demand constraints, then the resulting solution to such
an optimisation problem would, in fact, be the equilibrium market solution. That is, the
solution would yield the quantity that each region would supply and demand, the
quantity that would be traded between regions, and the supply and demand prices in
each region could be gleaned from the solution as the shadow prices associated with
the supply and demand constraints.

Takayama and Judge (1964) operationalised Samuelson’s approach by showing that if
the supply and demand functions were linear, then the resulting optimisation problem
was a quadratic programming problem (i.e. quadratic objective function with linear
constraints), which could be solved quite readily with available QP solvers.” Takayama
and Judge also extended the model to multiple products incorporating cross-price
terms in the supply and demand functions. The work of Samuelson, and subsequently
Takayama and Judge, spawned a great deal of empirical modelling, especially in the
area of trade. Even today, many trade models are constructed in the tradition of the
Samuelson-Takayama-Judge (STJ) genre. A very accessible and graphical exposition of
the ST] model can be found in Martin (1981).

Most spatial equilibrium models of the STJ type are formulated in the quantity domain.
This means that the supply and demand curves are inverted, the primal variables in
the model are quantities, and prices are read from the solution as shadow prices, i.e. as
we saw earlier. Alternatively, but less commonly in the case of trade models, the
“dual” problem could be formulated and solved, whereby the problem is solved in the
price domain. In other words, the variables in the model are prices and the shadow
values are the quantities. Either way, LP, QP, and more general NLP solution
techniques require that the demand functions be symmetric (see Nicholson et al., 1994).
This shortcoming was overcome with linear complementarity techniques (see the
primal-dual formulations in Takayama and Judge, 1971). However, up until the 1990s,
when complementarity solvers became commercially available, such primal-dual
problems were usually configured such that they could be “forced” into conventional
NLP solvers. Hence, the objective function, even if it was vacuous, still had to observe
the symmetry condition.®

¥ We hasten to point out that Samuelson warned of the problems associated with using his result to

make inferences about welfare. Hence his term “net social payoff”, which explicitly excludes a reference
to welfare. The literature would seem to suggest, however, that Samuelson’s cautionary note was almost
immediately ignored. See his 1952 paper for further details.

In fact, the objective function in the Takayama and Judge QP formulation embodies the integral
functions of the inverse linear demand and supply functions. It calculates the area under the demand
curve between the origin and the optimal demand quantity (a decision variable in the model), less the
area under the supply curve between the origin and the optimal supply quantity, less the transportation
costs. The result is the sum over all regions of producers’ and consumer” surplus.

Technically speaking, NLP solution techniques require that the Jacobian matrix, the matrix of first
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Finally, it should be noted that a number of policy instruments can be quite readily
modelled in a simple SPE model. Indeed, the trade literature is full of examples. For
example, the transportation cost component can be modified to include per unit tariffs,
taxes, and subsidies; import quotas can be introduced as upper bounds on shipment
variables; and even ad valorem tariffs can be modelled, so long as they are non-
discriminatory, by modifying the slope parameters of the demand functions. But there
are many policy instruments that the conventional SPE model is unable to
accommodate; discriminatory ad valorem tariffs, for instance.

3.4.1 The SPE model as an MCP

We now turn to the task of amending (LCP 1) to create a nonlinear complementarity
problem. We will refer to the resulting model as an MCP, even though it does not
contain a mixture of equalities and inequalities (see Figure 4, the model contains only
inequalities). Nevertheless, unlike the linear complementarity problem in Figure 3, our
SPE model is now a nonlinear problem due to the functional form we have chosen for
the supply and demand functions, i.e. they are constant elasticity functions.

The GAMS code seen in Figure 4 should by now seem quite familiar. The first 30 lines
are identical to the LCP model in Figure 3, except that we have introduced two new
parameters; eta and sigma, the elasticities of supply and demand, respectively.

We assume for simplicity that supply prices are unitary (i.e. equal to 1). In order to
specify the isoelastic functions, we need to compute share parameters based on the
base case, or reference data. Hence, lines 33 through 38 declare the parameters to do
this. Careful inspection will reveal that the reference demand prices are just the supply
prices plus the lowest transport cost to each demand city. Because supply prices are 1,
line 42 simply sets the supply function share parameter to be equal to the supply
quantity. Similarly, line 44 computes the demand share parameters using the reference
demand prices, pbar. Note that two asterisks is the GAMS way of denoting
exponentiation (e.g. line 44).

Before we take a look at the variables and the equations, we should reiterate that the
reference data we have specified here is purely fictional. Nevertheless, the GAMS code
in Figure 4 can be used as a template for specifying a realistic model where supply and
demand prices and quantities, and transportation costs are all observed, and the
elasticities are econometrically estimated. The set-based structure of GAMS also means
that the model is highly scalable to any number of regions (and commodities, for that
matter).

partial derivatives, be symmetric. The model is then said to be integrable. We should also point out that
complementarity techniques are not the only way out of this “requirement for integrability” dilemma.
Fixed-point algorithms, for example, received a lot of attention in the1960s and 1970s. But while
theoretically elegant, they have turned out to be rather slow and cumbersome in applied modelling
situations. Variational inequalities, closely related to the complementarity problem, may also be used
(see Nagurney et al., 1996b).
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Figure 4 GAMS code for a nonlinear complementarity problem

* Lines 1 through 13 the same as in Figure 3.

14

15 eta (i) price elasticity of supply

16 /seattle 1.0

17 san-diego 1.0 /

18

19 sigma (j) price elasticity of demand

20 /new-york 1.5

21 chicago 1.2

22 topeka 2.0 /;

23

24 Table dist(i,j) distance in thousands of miles

25 new-york chicago topeka

26 seattle 2.5 1.7 1.8

27 san-diego 2.5 1.8 1.4 ;

28

29 Scalar f freight in dollars per case per thousand miles /90/;
30

31 Parameters

32 c(i,]) transport cost in thousands of dollars per case
33 alpha (i) supply function share coefficient

34 beta (3) demand function share coefficient

35 pbar (j) reference price at demand city j (suppy price = 1)
36 /new-york 1.225

37 chicago 1.153

38 topeka 1.126 /;

39

40 c(i,3j) = £ * dist(i,3j) /1000 ;

41

42 alpha(i) = s(i);

43

44 Dbeta(j) = d(j)*pbar(j)**sigma(j);

45

46 Positive variables

47 x(1i,73) shipment quantities in cases

48 p_supply(i) shadow price at supply market i

49 p_demand(j) shadow price at demand market j ;

50

51 Equations

52 supply (i) supply limit at plant i

53 demand (J) demand constraint at market j

54 zprofit(i,j) zero profit conditions ;

55

56 supply(i).. alpha (i) *p_supply (i) **eta (i) =g= sum(j, x(i,3));
57

58 demand(j) .. sum (i, x(i,j)) =g= beta(j)*p_demand(j)** (-sigma(j));
59

60 zprofit(i,j).. p_supply(i) + c(i,3j) =g= p demand(]j);

61

62 Model transport /zprofit.x, supply.p supply, demand.p demand/;
63

64 p demand.l(j) = pbar(j);

65

66 Solve transport using mcp;

Source: Rutherford (1995).

The variables and the equations declared in this model, i.e. lines 46 through 54, are the
same as we had before in (LCP 1). The difference now is in the specification of those
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equations. Consider the left-hand side of the supply equation, i.e. line 56. Whereas
before we had s; on the left, i.e. the fixed supply, we now have a function of own-price,
p_supply, that will evaluate to yield the supply quantity. Similarly, the right-hand side
of the demand equation is the demand function. Notice the negative sign on the
elasticity term to give a downward sloping function. The zero profit condition and the
complementarity pairings in the model statement remain unchanged from what they
were earlier.

Finally, line 64 assigns an initial (strictly positive) value to the demand price variables.
If we didn’t do this, then the exponentiation in line 58 would yield a numerical error at
the start of the solution process. That is, at this point, prior to the model being solved,
the level of the variable p_demand is zero, and zero raised to a negative exponent is
undefined.

As we noted earlier, there is really no need to formulate this model as a
complementarity problem as it is perfectly able to be solved using conventional NLP
techniques. But consider the case of discriminatory ad valorem tariffs or taxes. That is,
imagine that each of the three demand cities was to charge each of the two supply
cities a different ad valorem tariff. Such a problem provides an example of where the
formulation of a market equilibrium is not straightforward.” No single optimisation
problem characterises the equilibrium because integrability has been destroyed, i.e. the
supply price is a non-unitary multiple of the marginal cost of supply. But there does
exist a unique MCP which precisely characterises the equilibrium.

Consider line 60, the zero profit condition. If we had a parameter called t;, denoting
our asymmetric ad valorem tariff or tax rate, then it would be a simple matter to
incorporate it into the model by modifying the zero profit condition as follows:

zprofit(i,j).. (p_supply(i,j) + c(i,3))*(1 + t(i,3)) =g= p_demand(]);

There are many other examples in economics where this modelling difficulty arises.
Asymmetric demand specifications, regime switching, threshold effects, switching
sides of the market (i.e. from being an exporter, say, to being an importer)," and tariff-
rate quotas are just a few. Exploiting complementarity is a convenient means of
resolving the difficulty. Specific taxes (or tariffs or subsidies) do not cause this problem
as they can easily be added to the per unit transport cost coefficients.

4. TARIFF-RATE QUOTAS

We now return to the topic implied by the title of this paper. Thus far we have
developed the intuition underlying the complementarity problem. Moreover, we have
shown how the popular spatial price equilibrium model can be formulated as a mixed

An equilibrium to such a problem could be computed by iteratively solving a sequence of NLPs,
but this is clumsy and inefficient.

10 See Anania and McCalla (1991) and Bishop et al. (1994).
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complementarity problem, and we have even presented the GAMS code, which can be
used as a template for building a realistic model." In this section of the paper we
discuss some aspects of tariff-rate quotas (TRQs) that make them difficult to
incorporate into models using conventional optimisation techniques. In the following
and final section, we bring everything together and present an SPE model complete
with TRQs.

4.1 The basic tariff-rate quota

As the name suggests, a TRQ embodies both a quantitative restriction in the form of a
quota, and a price instrument in the form of a tariff (which may be ad valorem or
specific).” Figure 5 presents a very simplified depiction of a TRQ.

Figure 5 A simple TRQ
P

¢ t 3
QNa rent !
i

! t

W

Source: NZIER

One can think of this as being a small country supplying a single good to a country that
imposes the TRQ. The supply curve is the bold line that begins horizontal at P.,, the
world price. It then turns vertical at Q', the import quota quantity, and beomes
horizontal again at P,, + t,, where t, denotes the over-quota tariff rate. For the moment,
imagine the importing country’s demand curve is that given by D;. Whilst the diagram
is clearly not to scale, imagine, for the sake of simplicity, that the supply curve belongs

! As we noted at the outset of this paper, we are unable to claim credit for much of what has been

presented here. The GAMS templates are no exception as they are taken, almost as originally presented,
from other sources.

Throughout this paper we have focused on ad valorem tariffs. We will continue that focus but
would point out that the MCP formulation also handles specific tariffs, as well as TRQs that might
contain both specific and ad valorem tariffs.
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to a single supplier while the demand curve represents the sum of all demand from
imported and domestically produced sources.

In this simple case, there are two tariff rates associated with this TRQ. The within-
quota tariff, t,, applies to all imports up to the quota quantity, Q". Above the quota, the
over-quota (sometimes called the out-of-quota) tariff applies. But significantly, the TRQ
places no quantitative restriction on the import volume that might occur above Q.
However, in practice, the over-quota tariff rates in agriculture are typically so high,
they prohibit any trade from taking place above the quota.

But it is not just the tariff rates and quota levels that determine the quantity of trade.
The nature of demand in the importing country also plays a role. Consider, the
demand curve depicted by D;. In this case, imports are exactly equal to Q and a quota
rent has been created (the shaded rectangle). The domestic price, Py, is determined in
the normal fashion by observing where demand intersects with supply. The
government in the importing country collects revenue equal to t,, times Q.

But what if D, was the relevant demand curve? Clearly in this case the quota would
not be binding and no rent is created. If this situation prevailed, then there is nothing
to be gained from trade liberalisation that saw either the quota quantity increased
and/or the over-quota tariff reduced. A small increase in trade would be observed if,
when D, was relevant, the within-quota tariff was reduced.

The more interesting situation is when the demand schedule lies somewhere near D; or
D;. When D; is the relevant demand curve, there is an interesting trade-off to be made,
by the supplying country, between the benefits of greater market access, i.e. an
increased quota quantity, versus a diminished quota rent. Consider the situation where
Q' is increased up until the point where the world price line intersects with D;.> Under
this scenario, the quota rent would diminish entirely but this would be offset to some
extent by increased exports. Which scenario should the exporting country prefer? The
answer is it depends. One needs a model with endogenous regime switching and an
endogenously determined quota rental variable in order to be able to ascertain which
situation is preferred. It may turn out that the exporting country’s favoured position is
a decline in Q, which would see the quota rental value increase.

Now consider the case when D; is relevant. In this situation a judicious increase in Q' is
likely to be beneficial to the exporting country, i.e. both the quota rent and the volume
of trade increase. On the other hand, the merits of a decrease in t, may be
indeterminate, i.e. the trade volume would increase, but the tariff rental value may
decline.

To muddy the waters even further, it is usually the case that in reality, TRQs are more
complex than that depicted in Figure 5. For example, there may exist several tiers to the
schedule. The tariffs and the quotas may be assigned on a bilateral basis as well as on a
multilateral basis. For reasons that have to do with historical trade patterns,

New Zealand has a disproportionate share of preferential access arrangements in some
markets. These may take the form of favourable tariff rates and/or exclusive quota
rights. Tariffs may be defined either on a specific basis or on an ad valorem basis.

All of these factors give rise to an interesting problem when deciding upon a
negotiating stance to adopt. The answer as to which regime New Zealand favours is
likely to be different from one case to the next. But New Zealand may not be in a
position to pick and choose. It is therefore imperative that New Zealand negotiators
understand what the outcomes of policy proposals are, as they are proposed and

3 Actually, the relevant line to consider is the line denoted by P, + t.
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before they are negotiated. In the next section we discuss a modelling framework that
is able to shed some light on these questions.

5. BRINGING IT ALL TOGETHER

We now present a 3-region SPE model formulated as an MCP, and which incorporates
tariff-rate quotas (see Figure 6). The core model specification is changed slightly from
the SPE model we saw in Figure 4, with all unnecessary detail stripped away. In fact,
we don’t even assign data values to the parameter symbols. Rather, we conduct the
entire discussion in terms of the symbol names. To keep things uncomplicated we
show only bilateral tariff-rate quotas. It is a straightforward modification, however, to
integrate multilateral TRQs into the same model. For an example of a trade model
formulated as a complementarity problem that embodies a wide range of price- and
quantity-based policy instruments, as well as multiple products, see Bishop and
Nicholson (2002).

Figure 6 GAMS code for an MCP with TRQs

1 SETS

2 i regions /rl, r2, r3/

3 gl quota levels (break points) /gll, gl2, gl3 /;

4

5 ALIAS (i,3);

6

7 PARAMETERS

8 s0 (1) reference supply quantity in region i
9 do (3) reference demand quantity in region j
10 x0(i,3) reference biltaeral trade quantity

11 eta (i) price elasticity of supply

12 sigma (j) price elasticity of demand

13 glvl(i,j,ql) bilateral quota levels

14 t(i,3,ql) bilateral tariff rates ;

15

16 ... Read in data here

17

18 POSITIVE VARIABLES

19 X(i,3,91) shipment of product from region i to region j
20 P (i) regional price

21 OR(i,3,ql) quota rent (price per unit) ;

22

23 EQUATIONS

24 ZPROFIT (i,Jj,ql) zero profit conditions

25 MARKET (1) domestic market clearing constraint
26 QUOTA(i,3,ql) limits on shipments by tariff class ;
217

28 market (i) ..

29 s0 (i) *P (i) **eta(i) + sum((j,ql), X(j,i,ql)) =e=

30 d0 (1) *P (i) ** (-sigma(i)) + sum((3j,ql), X(i,3,ql));

31

32 zprofit (i, j,ql) $(NOT sameas(i,j))..

33 P(1)*(1 + QR(i,J,ql) + t(i,3,9l)) =g= P(J);

34

35 quota (i, j,ql) $(NOT sameas(i,j)).. glvl(i,j,ql) =g= X(i,3j,ql);
36

37 MODEL trg /market.p, zprofit.x, quota.qgr /;

38

39 p.1(i) = 1;

40

41 SOLVE trqg using mcp;

Source: NZIER

NZIER - Tariff-Rate Quotas 22



July 6-7, 2001

Immediately noticeable is that the declaration of the sets, lines 1 through 3, is slightly
different than before. We have dropped the U.S. cities and gone with three generic
regions, denoted r1, r2, and r3. As we’ll see in moment, each region is both a supplier
and a demander of the single good. Hence, this model has three domestic markets that
are linked through their ability to trade with one another. Notice the “alias” statement
in line 5. It assigns the elements of set i to a set called j (i.e., i and j each have the same
elements).

The second set we define, ql, specifies that there are three steps or break points in the
quota schedule. This in turn implies that there are three levels in the tariff schedule. To
avoid confusion, we will be quite explicit about how this specification is to be
interpreted. We could imagine that ql1, the first element of set ql has a quota quantity
of, say, 1000 tonnes associated with it. All imports up to that point might attract a tariff
of 10%. The second element, q12, might relate to a quota quantity of 3000 tonnes, which
attracts a tariff of 50%. Finally, the third element, q13, might be infinity, and shipments
occurring in this band might attract a tariff rate of 250%. (We would point out that the
TRQ instrument normally has an infinite quantity associated with the upper tier,
although from a modelling point of view, this is not required.) To recap, our imaginary
tariff-rate quota schedule with three tiers operates as follows. Imports up to 1000
tonnes attract a 10% tariff. Imports between 1000 and 4000 tonnes, i.e. a 3000 tonne
quota at the second tier, attract a 50% tariff. And all imports over 4000 tonnes get
charged a tariff of 250%.

In lines 7 through 14 we declare some parameters. All but the last two should be
familiar from the models seen earlier. The reference or benchmark quantity of bilateral
trade, x0, is not necessary to specify the model, per se, although such data may be used
to validate the model’s ability to replicate the benchmark set of data. In any event, it is
at line 16 that one would ordinarily assign values to all of these parameters.
Alternatively, GAMS could be instructed at this point to read the necessary data from
an external file, such as a spreadsheet.

The parameters qlvl and t (lines 13 and 14) are new to this model, and their purpose
should be self-evident. These two parameters define the quota levels and tariff rates in
the manner we have just explained above. Notice that each of these parameters are
defined on sets i and j (i.e. on an origin-destination basis) as well as on ql. This should
reiterate the point that these parameters are defined bilaterally.

If one were to also include a multilateral TRQ, it would be accomplished by creating an
additional parameter for the multilateral quota levels, say, qlvlm(j,ql), i.e. it would not
be defined on i as it would apply fo all i. A multilateral tariff schedule can be
accommodated by assigning the appropriate values to the bilateral tariff parameter.
Alternatively, one could create a specific multilateral tariff parameter, even though it is
unnecessary. Obviously, care needs to be exercised in defining a model with both
multilateral and bilateral TRQs. It would make no sense, for example, for a multilateral
quota quantity in region j to exceed the sum of all bilateral TRQs emanating from j and
applying to all other regions. Finally, the addition of a multilateral TRQ would require
an additional variable and complementary constraint; i.e. a multilateral quota rent
variable and a multilateral quota constraint.

There are only three variables in this model. The shipment variable, x, we have seen
before. But notice that it is now defined on gl as well as i and j. One can think of each
origin-destination route as being a road divided into 3 lanes, one for each level of the
TRQ schedule. However, the price variable, p, is a significant change from earlier. We
now have just one price per region, whereas previously we had a supply price and a
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demand price. This comes about because we have removed all of the intra-regional
price wedges, i.e. there are no transportation costs in this model and the quotas and
tariffs don’t apply on intra-regional shipments. Hence, the equilibrium supply price is
identical to the demand price in each region.

The final variable (line 21) is the quota rent variable, gr. It can be interpreted as the
price of a unit of quota rent. Notice that it is defined on both i and j because it applies
to quota rents on a bilateral basis. Note too that it is defined on set gl. It should already
be apparent that there are potentially three “quota rent” rectangles of the kind seen in
Figure 5. The value of each quota rental is just the relevant qr variable multiplied by
the relevant quota quantity, qlvl. The key point to note about the quota rent variable is
that it is endogenous — a solution to the model will yield the level of gr. It is not the
case that the modeller must assign a value to the quota rent before using the model to
undertake experiments. Clearly, as was discussed in the previous section, the level of
the quota rent variable will be determined by the interplay of a number of factors.
Moreover, it will be consistent with the equilibrium outcome.

There are three sets of equations in this simple model. The first, called market, specifies
the condition that ensures each market clears and that trade flows balance." It says that
the quantity supplied plus the sum of all shipments from a region (including intra-
regional flows) must be equal to the sum of all shipments into a region (including intra-
regional flows) plus the quantity demanded. Careful inspection of the summation of
the x variable will reveal that the order of the indexes, i and j, is reversed on the right-
hand side of the equation from what it is on the left. The supply and demand functions
are specified such that prices are equal to 1 in the base case. Hence, there is no need to
compute and use the share coefficient terms, alpha and beta, as was the case in Figure
4. But we would stress that this is just for convenience; the functions could be
calibrated to any consistent price and quantity levels. As before, the supply and
demand relationships are isoelastic functions of own price.

The zero profit condition for this model is quite straightforward. In essence, it says the
price in region i multiplied by one plus the quota rent variable plus the tariff rate, is
greater than or equal to the price in region j. There are two points to note about this
condition. First, it is not defined when i equals j (see the statement that says “not
samesas (i,j)”. Second, a zero profit condition is defined for each level of the quota
schedule, i.e. set ql, as well as each (i5)™ route, so long as i is not the same as j. Because
the benchmark prices are normalised to one in this model, the quota rent variable
appears to enter the zero profit condition as a rate, just like the tariff rate. Once again,
this would not be the case if prices were modelled at their observed levels.

The final equation is the quota constraint. It simply says that for each i-j-ql arc, where i
is not equal to j, the quota level must be greater than or equal to the shipment quantity.

As before, the model statement specifies the complementarity pairing of variables with
equations. Also, we set the initial price level to be one in order to avoid undefined
exponentiation. The final statement tells GAMS to solve the model called trq, while
making sure to treat it as an MCP formulation.

6. CONCLUDING REMARKS

Although it took a while to get there, we have now presented a comprehensive

! The term “trade flows” is used rather loosely here. It includes intra- as well as interregional flows.
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template of an SPE trade model, formulated as an MCP, that can easily be scaled up to
realistic dimensions. We finish this paper with a few comments on how to use the
model to conduct experiments.

A typical experiment would entail decreasing tariff rates and observing what happens
to production, demand, trade volumes, prices, and quota rents. For example, an across
the board tariff cut of 30% could be modelled by adding the statement

t(i,j,ql) = 0.3*t(i,j,ql); immediately after the solve statement in line 41,
followed by a second solve statement. The results of the simulation (the second solve)
can then be compared with the benchmark case (the first solve). One could get more
specific, however, and conduct experiments where only the tariffs on certain routes
and/or certain levels of the tariff schedule are modified.

Similarly, one could simulate market access scenarios by increasing quota levels.

Finally, a likely policy scenario would involve increased quota levels in conjunction
with decreasing tariff rates.
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