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Abstract 
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about this MA unit root test, based on a variance-difference, is that, instead of having to 

deal with non-standard distributions, it takes the testing back to the normal distribution 

and offers a way to increase power without having to increase the sample size 

substantially. Monte Carlo simulations show minimal size distortions even when the AR 

root is close to unity and that the test offers substantial gains in power against near-null 

alternatives in moderate size samples. An empirical exercise illustrates the relative 

usefulness of the test further. 
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1. Introduction 

 Non-standard distributions are a common feature of many tests for unit-roots and 

cointegration that are currently available.1 The main problem with non-standard 

distributions is that when the true data generating process is unknown, which is the case 

in general, it is not easy to engage in a specification search because the distribution 

changes as the specification changes, especially with respect to deterministic 

components. As Cochrane (1991, p. 202) expressed: “To a humble macroeconomist it 

would seem that an edifice of asymptotic distribution theory that depends crucially on 

unknown quantities must be pretty useless in practice.” Some reprieve to this has been 

offered by Phillips (1998, 2002) who showed that the limiting forms of autoregressive 

unit root processes can be expressed entirely in terms of deterministic trend functions. 

The implication of this finding is that “one might mistakenly ‘reject’ a unit root model in 

favour of a trend ‘alternative’ when in fact the alternative model is nothing other than an 

alternative representation of the unit root process itself.” (Phillips, 2002, p.324). 

Considering the complexities involved in the specification of deterministic trend models 

his recommendation is, especially on grounds of parsimony and forecasting, to use pure 

autoregressions. Nevertheless, economic reasoning may necessitate some deterministic 

components in the model that will take us back to the same problem of multitude of non-

standard distributions. 

 
 In this exercise we re-visit the problem with the objective of presenting a test for 

cointegration based on the null of stationarity of the deviations from a long-run 

                                                 
1  See Maddala and Kim (1998) for an extensive survey of the unit root literature.  
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relationship. The test brings the distribution back to the normal distribution and at the 

same time offers a substantial improvement in power. The importance of tests based on 

the null of stationarity need not be overemphasized. Although a disproportionate amount 

of research has gone into I(1) processes, the I(1) characterization of economic time series 

may be too restrictive in many practical situations.  What is of general interest is whether 

the regression provides stable parameters with stationary residuals regardless of the 

nature of the non-stationarity of the individual series. For example, two variables which 

are causally related may have structural breaks in them and the usual unit root tests may 

perceive them to be I(1) processes. In a regression relationship, however, the structural 

break may disappear and the regression may deliver stationary residuals.2 Therefore, 

forming a null of stationarity will allow us to test it against different alternatives such as 

autoregressive (AR) unit roots, fractional integration, structural breaks and policy 

interventions. The relevant alternative has to depend on the particular empirical analysis 

carried out. In this exercise we consider only the AR unit root alternative and defer the 

evaluation of other alternatives to future work.  

 
 The test presented here focuses on a moving average (MA) unit root. Although the 

idea of testing for an MA unit root is not new (see Table A.1) the importance of such 

tests need to be re-emphasized. Being a behavioral outcome an AR unit root could be 

somewhat illusive (see Hamilton, 1994, Sec. 15.4) whereas an MA unit root can be 

created by over-differencing a stationary process, therefore, easier to pin down. The basic 

                                                 
2 There are also cases where economic theory leads to using variables like investment/GDP ratio or the 
average tax rate in regressions. The meaning of a unit root in these variables is unclear. 
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idea underlying our test procedure emanated from a mixed-frequency regression 

presented in Abeysinghe (1998, 2000) and temporal aggregation and dynamic 

relationships studied in Rajaguru and Abeysinghe (2002) and Rajaguru (2004). The test 

procedure involves a simple data transformation to obtain a mixed frequency regression 

and focuses on the difference in error variances of the original model and the transformed 

model. This method can be exploited to develop even better tests with standard 

distributions.  

 

2. Power of Existing Unit Root Tests 

 As can be seen later in a Monte Carlo simulation, our proposed test entails substantial 

gains in power at near null alternatives. For comparison Table A.1 in the Appendix 

provides a non-exhaustive summary, extracted from the cited studies, of the power of 

both AR and MA unit root tests near the null at a sample size 100 (or 200 in a few cases). 

Panel (a) in the table is for the non-stationary null (AR unit root) and panel (b) for the 

stationary null (MA unit root or its variants). Panel (a) also includes a representative 

citation of power under structural breaks. The literature on unit roots under structural 

breaks has also grown rapidly and we do not digress into this literature. The reference 

model given in the table involves an over-simplification for some simulation exercises. A 

general specification of the stationary null is given in models (1) and (2) of the paper.  
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 The summary in Table A.1 highlights the low power of unit root tests in general 

although some test procedures produce reasonably large power at a sample of size 100.3 

As stated earlier, most of these tests have to deal with non-standard distributions and 

increasing the power requires increasing the sample size. These are the problems that we 

try to address by the proposed test procedure. 

  

3. Methodology 

 Consider the following model that Leybourne and McCabe (1994) extended from 

Harvey (1989) and Kwiatkowski et al. (1992) to test the null of stationarity against an 

alternative of difference stationarity: 

1 0

( )
      ,  

t t t

t t t

L y tφ α β ε
α α η α−

= + +
= + = α

              (1) 

where 2~ (0,t iid )εε σ , 2~ (0,t iid )ηη σ

p

, both of which are independent of each other, and 

11 ... p( )L Lφ φ= − − − Lφ  with roots outside the unit circle. This has the following 

ARIMA(p,1,1) representation: 

1 1 ...t t p t p t 1ty y y uΔ β φ Δ φ Δ θ− −= + + + + − u −

)

            (2) 

where 2~ (0,tu iid σ  with 2 2 /εσ σ θ= ,  and 2 1/ 2( ( 4 ) 2) /θ λ λ λ= − + + 2 22 /η ελ σ σ=  is 

the signal-to-noise ratio. The so-called hyper-parameter 2
ησ  is a measure of the size of the 

random walk in (1). If , 2
η 0σ λ= = 1θ =  and model (2) collapses to a stationary AR(p) 

                                                 
3 It should be noted that Monte Carlo results by Gonzalo and Lee (1996) show that the size and power 
properties of Dickey-Fuller type unit root tests in many situations are better than the standard t-tests for 
stationary roots of autoregressive processes. 
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process. Alternatively, tyΔ  in (2) has a non-invertible ARMA(p,1) representation.  To 

test the null of stationarity a number of researchers formulated tests based on 2
0 : 0H ησ =  

vs . These are in effect tests of an MA unit root and the distributions involved 

are in general non-standard. As 

2
1 :H ησ > 0

λ  increases, θ  approaches zero and we get a standard 

unit root autoregression. In this exercise the ARIMA model in (2) forms the basis of our 

test.   

 
3.1 Null of Stationarity (MA Unit Root) 

 As stated earlier our test is based on a mixed frequency regression procedure 

(Abeysinghe, 1998, 2000) that helps in increasing the power of the test at a given sample 

size. To illustrate the idea, (2) can be written as 

1t tu u ( )L tyθ β φ Δ+ .              (3) −= −

tuIf  is assumed to be observed at intervals , 2 ,...,t m m T= , where  is a positive 

integer, and 

2m ≥

tyΔ  is observed at intervals 1,2,..,t T= , the basic idea of the mixed 

frequency regression is to transform 1tu −  in (3) to t mu −  such that all the observations of 

tyΔ  are retained in the regression. This transformation is easily obtained by multiplying 

(3) through by the polynomial 1 1m mLθ( ) 1θ θ ...L L − −+= + + . The transformed model can 

be written as 

( ) ( )L L y (1)t tVθ φ Δ θ β= +               (4) 

where ( )(1 ) m
t t tV L L u u uθ θ θ t m−= − = − . 
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 Now note that under the null 0 : 1H θ = , 2( ) 2tVar V σ=  and under the alternative 

1 :| | 1H θ < , 2 2( ) (1 )m
tVar V 22θ σ σ<= + . Therefore, 2 2m

2σ σ− , where , 

forms the basis of our test. By transforming the test of 

2 ( )m tVar Vσ =

θ  into a test of  we can 

arbitrarily increase the distance between the null and the alternative simply by increasing 

m whereby extra gains in power is made possible. For example, a test of 

( )tVar V

1θ =  when 

0.9θ =  translates into comparing 22σ  against 21.43( )tVar V σ=  for m=4 and 

21.08( )tVar V σ=  for m=12. This transformation allows us to formulate a number of test 

statistics that follow standard distributions. 

 Given that we can obtain consistent estimates of the parameters in (2), we can 

compute 2σ̂  and  2ˆmσ  (see below) and then form the test statistic 2ˆ ˆ( 2mT 2 )σ σ−  to test 

1θ =  against | | 1θ < . Using the subscript T to indicate the dependence on the sample 

size, the following theorem establishes the asymptotic distribution of the test statistic.  

 

Theorem  

Given that 2~ (0,tu iid )σ  and assuming 4
4( )tE u μ= < ∞ , under the null hypothesis of 

1θ =  and for m>p, 2 2ˆ ˆ( 2 ) (d
TT 4

, 0, 4 )m T Nσ σ− ⎯⎯→ σ . In small samples 

2 2ˆ ˆ2 )] 4m T Tσ σ− = 4 4 2
, 4 4[ ( 4 ( / ) /a aT T T mT Tσ μ+ 1) 2(μ σ− − −Var , where  is the 

effective sample size. 

aT

Proof: see Appendix.  
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 The test procedure in practice is the following. Assuming p+1 pre-sample values 

 are available, estimate the ARMA(p,1)0,...,py− y 4  for tyΔ  in (2) by ML and obtain θ̂  

and  (these are provided by  standard computer software 

procedures). Then obtain 

2 2

1

ˆ ˆ /( 2)
T

t
t

u T p
=

= −∑

ˆ

σ −

m
ˆˆ ˆm

t t tV u uθ −= − and 2

1
m t

2ˆ ˆˆ ( ) /( 1)
T

a
t m

V V Tσ
= +

= − −∑ , where V̂  is 

the sample mean of series, V̂ aT T m= − , and compute the z score. If  is assumed to be 

Normal then 

tu

2 2 2ˆ ˆ ˆ( 2 ) /[2 (1mσ σ σ 2 13( / 1 / )T T T= − + −

1

/ 2 ])a mT− az T  and reject the null 

hypothesis θ = c≤ if  where c is a left-hand critical value from the standard normal 

distribution. We term this z(MA) test to differentiate it from a z(AR) test that can be 

obtained by extending our test procedure to the AR unit root case.

z

5 

 In estimating θ  there are two problems that we have to guard against. One is the well 

known pile-up problem of the ML estimator at the invertibility boundary (see Breidt et 

al., 2006, for references). The pile-up problem is an issue that is being addressed by a 

number of researchers. In particular Davis and Dunmuir (1996) have explored the 

possibility of using a Laplace likelihood with a local maximizer to estimate an MA(1) 

model with a unit root or a near unit root. It is very likely that an estimator of θ  that will 

overcome the pile-up problem will emerge in due course. From a practical point of view, 

the pile-up problem of the Gaussian likelihood may not be a serious problem. Although 

                                                 
4  Model selection criteria and the usual diagnostics may be used for determining the structure of the model 
(see the empirical exercise in Section 5).  
5 We extended the test procedure to the AR unit root case, which provides a generalization to the variance-
ratio test developed by Lo and MacKinlay (1988, 1989). Although the extension works very well (better 
power)  in the AR(1) case, we still need further work on the AR(p) case. 
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over-differenced stationary series produce 1θ = , AR unit-root series are likely to produce 

a θ  well away from unity.    Many empirical estimates of θ  from non-stationary series 

hardly exceed 0.9 and do not exhibit the presence of the pile-up problem. As we shall see, 

our test offers sufficient power against the alternative of θ =0.9 in moderate-sized 

samples.  

 The other difficulty is the near common factor problem. Although the ML estimator 

of θ  under the null is T-consistent (see Davis and Dunmuir, 1996, and reference therein), 

an AR factor with a root close to unity may render a highly unreliable estimate of θ  in 

certain samples. The near common factor problem can easily be spotted by fitting an 

AR(p) model to ty  and ARMA(p,1) to tyΔ  (see the application in Section 4). If ty  is 

stationary with an AR root near unity and if it is not well estimated in the  ARMA model 

then it is important to re-estimate the model using different starting values for θ , 

including θ =1.6  

 

3.2 Monte Carlo Results 

 In this section we present the results of a Monte Carlo experiment to highlight the 

size and power properties of the test under near unit root alternatives. Since our primary 

interest is in cointegrating relationships we use the following model for the simulation 

exercise. 

0 1

1 .
t t

t t t

ty x z
x x

δ δ
ε−

= + +
= +

               (5) 

                                                 
6  It is instructive to use a dedicated ARIMA software procedure for estimation. We used SAS PROC 
ARIMA in our exercise by removing the default boundary constraint.  

 9



1(1 ) (1 )tL z L utφ Δ β θ− = + −               (6) 

where  and tu tε  are generated from independent  distributions. If (0,1)N 1δ  is known 

then (6) represents the case of testing for the stationarity of a known long run 

relationship. If 0δ  and 1δ  are estimated then (6) represents the case of testing for the 

stationarity of regression residuals. The size of the test is obtained when 1θ = . For this 

we set 1 0.5 ,  0.95,  0.9φ = . For power, we use 0.8,  0.9θ =  with 1 0.5φ = . In the case of 

known    tz 1β =  and when  is estimated residuals tz 0β =  and 0 1 1δ δ= = . We 

obtained the simulation results for m=2,4,6,8,10,12 and the size and power of the test are 

reported in Tables 1 and 2 respectively. We exclude the results for m=10,12 from the 

tables because they do not add much new information. Moreover, when 1θ =  and 1φ   

large, convergence problems occur in some replications in small samples, so we obtained 

only the large sample results for these cases in Table 1. For the sample sizes considered 

here we noticed that the results do not change much whether we use the small sample 

variance or the asymptotic variance given in the theorem; so we use the asymptotic 

variance to obtain the results in these tables.  

 We observe that as m increases the size tends to increase especially when regression 

residuals are involved. Since the test relies on the consistency of θ̂ , the small-sample bias 

of the estimator tends to distort the distribution of the test statistic as m increases. Table 2 

shows that the power of the test is quite impressive. However, the gain in power when m 

increases beyond 4 is rather small. Therefore, based on both size and power properties an 
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m=4 seems to be an optimal choice. We also examined the results by over-fitting the AR 

order upto p=3; the results remain very much unaffected by this over-fitting.   

 These results may be compared with those in Table A.1. In particular, it is worth 

making a comparison with the variance-difference (VD) test that Breitung (1994) 

developed. This asymptotically normal VD test, derived based on the assumption of an 

MA(q) process,  produces desirable small-sample size and power properties for finite 

order MA processes. However, when the process involved was an ARMA(1,1) that 

needed to be approximated by a finite order MA process, Breitung observed substantial 

size distortions. For example, when 1φ =0.9 (θ =1), T=100, α =5%,  Breitung reported 

empirical size of 0.907 for MA(4) approximation and 0.215 for MA(12) approximation. 

This problem does not arise in our test as we can see in Table 1. The table also shows that 

near AR unit root cases which manifest with low power in AR unit root tests come under 

the control of type I error in this MA unit root test. 

================= 

Insert Table 1, Table 2 

================= 

4. Some Empirical Results 

 As empirical illustrations, we present two sets of results. The first is a representative 

group of variables from Abeysinghe and Choy (2007) who present a 62-equation 

macroeconometric model (ESU01 model) of the Singapore economy and the second is a 

test of stationarity of the average propensity to consume (APC) in OECD countries.  
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 Abeysinghe and Choy (2007) estimated all the key behavioral equations in their 

model individually in the form of error correction models by crafting out the underlying 

long-run (cointegrating) relationships, paying careful attention to specific features of the 

Singapore economy, economic theory, and parameter stability. Table 3 presents test 

results for two groups of cointegrating relationships: (i) cointegrating regression 

residuals7 and (ii) relations with known coefficients. In the latter group, the oil price 

equations were designed to check the extent of exchange rate pass-through.8 Relative unit 

business cost (RUBC) and the real exchange rate (RER) are both measures of 

competitiveness. Although the RER presented in the table is not a variable in the ESU01 

model, we use it here for further illustration of the performance of the test.  

============= 

Insert Table 3 

============= 

 In Table 3, all series except for RER clearly qualify as AR(1) processes and it is 

worth noting that the estimates of ρ from AR model and ARMA(1,1) model for the first 

differences are very close. Therefore, first estimating an AR(p) model provides a good 

check against the ARMA(p,1) estimation for the MA unit root test. It is also useful to 

note that when over-differencing is not involved as in the RER case (also those in Table 4 

                                                 
7  Readers interested in the regression equations and data are referred to Abeysinghe and Choy (2007). 
8 As the third largest oil refining center and trading hub in the world Singapore may have some price 
setting power on its oil market in which case the stationarity of the long-run relationship with unity 
restriction has to be rejected. Note that short-run pass through is well below unity. 
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below) the MA root is likely to be a distance away from unity in many practical cases and 

as a result our test carries a lot of power against such alternatives.   

 The test results in Table 3 show that if we were to use the ADF test to test for 

cointegration  only three equations (consumption, exports and oil export price) qualify as 

cointegrating relationships (the null of AR unit root is rejected). Our z(MA) test, on the 

other hand, does not reject the null of stationarity (and cointegration) in all the cases 

except the last one. The RER series with ρ̂ =0.98 clearly comes out as a non-stationary 

process. Since Abeysinghe and Choy (2007) have already studied these cointegrating 

relationships in detail, and the fact that the z(MA) test results concur with their findings 

represents a strong case in favor of the new test.  

 As a further illustration of the test, Table 4 presents the test results from three popular 

tests and the z(MA) test on APC for 21 OECD countries.9 Because of the non-availability 

of sufficiently long data series on non-durable consumption and disposable income we 

measure APC by the ratio of total consumption expenditure to GDP. Although the APC is 

expected to be stationary for developed economies on the grounds that long-run 

departures of consumption expenditure from income is less likely, some countries show 

local trends in their APCs over the sample period. This is reflected in large values of ρ̂  

(the sum of AR coefficients) in Table 4. This is where many tests may misconstrue the 

APC to be an I(1) process.  

                                                 
9  Data for this exercise are from the IFS database except for France. IFS data for France show some 
irregularities; therefore, France data were taken from the OECD database which covers a shorter time span 
than the IFS database. 
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 As in Table 3, we notice in Table 4 the close correspondence between AR(p) 

coefficients and ARMA(p,1) coefficients in identifiable stationary cases. It is also worth 

noting that in stationary cases θ̂  turns out to be almost unity. This means that the size 

distortion we noticed in the Monte Carlo experiment resulting from under estimation of θ 

may not be a serious problem in practice.  

 Again the ADF test turns out to be the least powerful against near unit root 

alternatives, as it renders an I(1) verdict for 18 of the 21 APC series. The KPSS test and 

the Johansen test fair better, recognizing eight cases as cointegrating relationships. 

Unfortunately the eight cases do not necessarily overlap. Our z(MA) test, on the other 

hand, takes 15 of the APC series to be stationary. It rejected stationarity only when 

ρ̂ ≥0.97 and when the local trend dominated the series; see the cases of Canada and 

Korea for a comparison, both with ρ̂ =0.97, while one is assessed to be I(0), the other 

I(1). Like many fast growing developing economies Korea experienced a falling APC till 

the mid 1980s before stabilizing to fluctuate around a constant mean. Rejecting the null 

of stationarity of APC is, therefore, an indication of the interplay of other variables that 

need to be considered instead of taking APC to be an I(1) process.  

================== 

Insert Table 4 

=============== 

5. Conclusion 

 This exercise addresses three important issues. First, it highlights the importance of 

formulating tests based on the null of stationarity. Unfortunately the profession has not 
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paid enough attention to this. What is of general importance is whether a regression 

relationship produces stationary residuals regardless of the nature of non-stationarities of 

the individual series. Moreover, an AR unit root in an individual series is hard to pin 

down because an apparent unit root could be a manifestation of some other forms of non-

stationarity. We present an MA unit root test based on the null of stationarity. Unlike the 

AR unit root which is a behavioral outcome, the MA unit root is created by over-

differencing and therefore easier to pin down.  

 Although testing for an MA unit root is not new to the literature the existing tests 

require non-standard distributions.  The second important aspect of the exercise is that the 

proposed test brings us back to the normal distribution and makes specifications searches 

easier. The third aspect of the exercise is that the test procedure entails a mechanism to 

increase power without necessarily having to increase the sample size. This addresses the 

problem of low power at near null alternatives of many unit root tests that are currently 

available.  

 An important objection one could raise against our test is the difficulty of estimating 

an MA root on or near the unit circle. Some researchers are actively working on this 

problem and a better estimation method is likely to emerge in due course. Nevertheless, 

as our empirical exercise highlights, the estimation problem may not be that serious in 

cases encountered in practice. An alternative would be to devise a method that avoids 

estimating θ. We tried to obtain the transformed residuals in (4) through a couple of 

methods that utilized only the AR parameter estimates, but they did not improve power 

much despite producing impressive size properties. 
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Appendix 

Proof of the Theorem  

Here we derive the distribution of 2
,ˆ ˆ( 2m T TT 2 )σ σ−  under the null hypothesis 1θ = . 

The ML estimates of the parameters are obtained by running the model in (2). Using the 

results below it can easily be verified that 2 2
,ˆ ˆ( 2 ) p

m T TT σ σ 0− ⎯⎯→ . To derive the 

variance, this can be expressed as  

2 2 2 2 2 2 2
, ,ˆ ˆ ˆ ˆ[ ( 2 )] [( 2 ) 2( )]m T T m T TE T T Eσ σ σ σ σ σ− = − − − 2 .          (A1) 

It is well established that 2 2ˆ ˆˆ (1/ ) (1/ )p p
T T T T TT Tσ σ′ ′= ⎯⎯→ ⎯⎯→u u u u  and 

2 2 4
4ˆ( ) (0, ( ))d

TT Nσ σ μ σ− ⎯⎯→ − .  (See, for example, Hamilton, 1994, p. 212.)  

For  2
,ˆm Tσ , with reference to model (2) define 1( , ,..., )pβ φ φ ′=β , the  

matrix

(1 )T p× +

X with the t-th row given by 1,..., )t t py y(1,Δ Δ− − , 1 2, ,..., )Tu u u( ′=u , 

, 1 0( 1, ,...,u u 1 )Tu− − ′=u 1( , ,..., )m m m Tu u u− + ′=u , and the ( 1)T m T− + × aggregation matrix 

A: 

1 2

1 2

1 2

1 2

. 1 0 0 0 . . 0 0 0 0 0
0 . 1 0 0 . . 0 0 0 0
0 0 . 1 0 . . 0 0 0 0 0
. . . . . . . . . . . . . . .
0 0 0 0 0 0 0 0 . . . 1

m

m

m

m

θ θ θ
θ θ θ

θ θ θ

θ θ θ

−

−

−

−

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

A
0

     (A2) 

 
 Model (2) now can be written in vector-matrix notation as 1θ −= + −y Xβ u u . Pre-

multiplying this by A and using the subscript a to indicate aggregation, we obtain 
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m
a a θ −= + −y X mβ u u  which can be re-arranged to give ( 1)m

a a θ m−= + − −y X β V u  

where  under the null. Now we can obtain m−= −V u u

* * *

ˆ ˆˆ ( )
ˆ   ( )a

θ= − − +

= − −
aV V X ( 1)m

m−−β β

V X β β

*
a

u
           (A3) 

X  is augmented aX  with the first element of the tth row given by  and where t mu −

* *ˆ( )−β β  is augmented ˆ( − )β β  with the first element given by . Now defining 

the diagonal scaling matrix  of dimension (

ˆ( 1)mθ −

)ϒ 2 ) (2p p+ × +

ˆ

with the first diagonal 

element given by T and the rest by  (Sims et al., 1990; Note, 1/ 2T θ  is T-consistent) we 

obtain under the null: 

2 * * *
,

* *

ˆ ˆˆ (1/ ) (1/

                             (
ˆ    (1/ ) 2(

ˆ        ( ) ( /

m T T T

T T T

T T

T

σ = =

+

= −

′+

V V

β

V V β

β - β

* * * * * *

* * 1 *

1 *

ˆ) (2 / )( )

ˆ ˆ) ( / )( )

) ( / )( / )

)(

T T T aT T

T aT aT T

T T aT T

T aT a

T T T

T

T T

T

ϒ ϒ

ϒ ϒ

−

−

′′ ′ ′−

′′

′′ ′

′

V V β - β X V

- β X X β - β

- β X V

X X

      (A4) 
* 1 *ˆ)( / )(T T T TTϒ ϒ * )

2     2 .p σ

β - β−

⎯⎯→

This result holds because * *ˆ( / )( ) p
T TTϒ ⎯⎯→β - β 0  while the rest converge to bounded 

quantities. 

2 22 ) Now we have to consider the distribution of ,ˆ( m TT σ σ− . Multiplying (A4) 

through by T  shows that the last term of (A4) converges in probability zero and in the 

second term, 3 / 2
1( 1)( a t tT T X−− ∑ˆmθ )V 0p⎯⎯→  and 2( )(1/ ) p

a t tT T X Vβ βˆ 0− ⎯⎯→∑ . 

Thus we have to consider the distribution of  
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2 2
,

2

ˆ( 2 )

ˆ         ( / 2 ) 2 ( ) ( / )

m T

a T aT

T

T T T

σ σ

σ

−

′′ ′= − − −T TV V β β X VT aT
       (A5) 

where the presence of the constant term in the aX  matrix is inconsequential. 

 Now consider the variance of the first term on the RHS of (A5): 

2 2 2 2

1
2 2 2 2 2 2 2

( / ) [( ( 2 )]

        ( / )[ ( 2 ) 2 (( 2 )( 2 )]

T

a t
t

a t t t k

T T E V

T T E V E V V

σ

2σ σ σ
=

−

−

= − + −

∑

∑ ∑ −

4

         (A6) 

where k =1,2,... 

  From the first term of (A6): 

2 2 2 4 2 2 4 4( 2 ) ( 4 4 ) ( ) 4t t t tE V E V V E Vσ σ σ− = − + = − σ

2

4 )

 

and 

4 2 2

2 2 2

4
4

( ) [( ) ]

         = [( 2 )( 2 )]

         =2 6 .

t t t m

t t t m t m t t t m t m

E V E u u

E u u u u u u u u

μ σ

−

− − − −

= −

− + − +

+

 

Thus 

2 2 2
4( 2 ) 2(tE V σ μ σ− = + . 

  From the second term of (A6): 

2 2 2 2 2 2[( 2 )( 2 )] ( ) 4t t k t t kE V V E V V 4σ σ σ− −− − = − . 

Now for k=m 

2 2 2 2 2 2
2 2

4
4

( ) [( 2 )( 2

               = 3 .
t t m t t t m t m t m t m t m t mE V V E u u u u u u u u

μ σ
− − − − − −= − + − +

+

)]−  

Thus  
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2 2 2 2 4
4[( 2 )( 2 )] ,   if 

                                         0,  otherwise.
t t kE V V k mσ σ μ σ−− − = −

=

=

4
4

 

Combining the two terms of (A6) we obtain: 

2 2 2 2

1
2 4

4
4 2

4 4

4

( / ) [( ( 2 )]

            ( / )[ (2 2 ) ( )(2 2 )]

            4 / 2( ) / ]
            4 .

T

a t
t

a a a

a a

T T E V

T T T T m

T T mT T

σ

μ σ μ

μ μ σ
μ

=

−

= + + −

= − −

→

∑
σ−

2 )

      (A7) 

 Note that 2( 2tV σ−  is a stationary process and therefore by the central limit 

theorem 2
4( /T T aT T 2 ) (0, 4 )d Nσ μ− ⎯⎯→′V V .  

 Now consider the second term on the RHS of (A5). To obtain its variance first note 

that 2ˆ( ) ( , ( / )dT N σ −′− ⎯⎯→β β 0 X X 1 )T

2

1

t t mu

 and  

where c is a vector. This vector can be derived easily by noting that the 

aggregated form of model (2) under the null provides, , where 

 Note that the first term of  that 

corresponds to the constant term of the model is zero. Now consider the second term in 

the  vector:  

2
1/ ( , ,..., , )p

aT T a pT mσ φ φ′ ⎯⎯→X V c

1( ) ( )m t t ty L V L VΔ φ ψ−= =

/aT T aT′X V

(1 ) 1p+ ×

1 1 ψ= = + 1 2( ) ( ) ...L L L Lφ ψ ψ− + +

/aT T aT′X V

2 1

2
1 2 1

2
1

(1/ ) (1/ ) (1/ ) ( )

               (1/ ) [(1 ...)(1 ) ]( )

               .

a a t t a m t t a t t

m
a t

m

T X V T y V T L V V

T L L L u u

Δ ψ

ψ ψ

σ ψ

− −

− −

−

= =

= + + + − −

= −

∑ ∑ ∑
∑  
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Proceeding in this way, we obtain for p=m: .  If p>m the c 

vector will have zero entries for the excess terms. Using these results the variance of the 

second term of (A5) can be written as 

2
1 2(0, , ,...,1)m mσ ψ ψ− −′ = −c

2ˆ[2 ( ) ( / )] 4 ( / )T aT T aVar T T Tσ −′′ ′ ′− = 1β β X V c X X c .      (A8) 

Monte Carlo simulation results show that when m>p,  contributes very 

little to the overall variance of (A5) and therefore can be dropped safely from the 

derivation. 

2 ( / )Tσ −′ ′c X X c1

 Now using Hausman’s approach (Hausman, 1978) the variance of 2 2
,ˆ ˆ( 2m TT )σ σ−  

can be obtained as the difference of the variances of 2
,ˆ( 2m TT 2 )σ σ−  and  2 2ˆ( )TT σ σ− . 

Thus we obtain: 

2 2 2 4
4 44 4( ) 4,ˆ ˆ[ ( 2 )]m T TE T σ σ− 4= μ μ σ σ− − =        (A9) 

This is the variance of the difference of two asymptotically normally distributed 

variables, hence we establish that  

2 2
,ˆ ˆ( 2 ) (0,4d

m T TT N 4 )σ σ− ⎯⎯→ σ .         (A11) 

 In small samples from (A7): 

2 2
,

4
4 4

ˆ ˆ[ ( 2 )]

        4 4 ( / 1) 2( ) / .
m T T

a a

Var T

T T mT T

σ σ

σ μ μ σ

− =

+ − − − 4 2
     (A12)  

QED 
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Table 1  
Size of the z(MA) test for an MA unit root (2000 replications) 
 

Known long-run relation or single series 
 m=2 m=4 m=6 m=8 

1φ =0.5, θ =1 
T 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%

100 0.010 0.028 0.058 0.022 0.048 0.087 0.027 0.050 0.088 0.030 0.052 0.085
200 0.008 0.030 0.055 0.020 0.042 0.076 0.028 0.056 0.086 0.031 0.059 0.091
300 0.008 0.028 0.068 0.017 0.050 0.096 0.032 0.076 0.121 0.038 0.066 0.103
500 0.002 0.030 0.068 0.013 0.054 0.095 0.022 0.060 0.096 0.027 0.061 0.104

1φ =0.9, θ =1 
200 0.010 0.035 0.076 0.011 0.039 0.079 0.013 0.042 0.083 0.015 0.045 0.077
300 0.007 0.034 0.079 0.008 0.040 0.089 0.011 0.052 0.097 0.009 0.038 0.075
500 0.005 0.035 0.080 0.009 0.037 0.084 0.011 0.044 0.080 0.008 0.038 0.087

1φ =0.95, θ =1 
300 0.009 0.044 0.090 0.005 0.040 0.082 0.008 0.038 0.087 0.005 0.047 0.101
500 0.006 0.038 0.078 0.006 0.048 0.089 0.008 0.040 0.095 0.011 0.049 0.097

 
Regression  residuals 

1φ =0.5, θ =1 
100 0.014 0.050 0.083 0.041 0.081 0.113 0.056 0.094 0.137 0.075 0.111 0.150
200 0.007 0.032 0.060 0.026 0.064 0.103 0.041 0.088 0.132 0.062 0.105 0.149
300 0.009 0.030 0.056 0.024 0.057 0.095 0.040 0.080 0.130 0.053 0.091 0.132
500 0.006 0.028 0.055 0.015 0.057 0.093 0.023 0.069 0.122 0.047 0.093 0.140

1φ =0.9, θ =1 
200 0.019 0.059 0.099 0.035 0.085 0.130 0.055 0.103 0.149 0.074 0.118 0.163
300 0.012 0.048 0.096 0.025 0.073 0.117 0.051 0.100 0.145 0.062 0.118 0.165
500 0.009 0.037 0.084 0.016 0.054 0.106 0.033 0.082 0.137 0.037 0.085 0.142

1φ =0.95, θ =1 
300 0.020 0.064 0.114 0.038 0.085 0.135 0.050 0.104 0.153 0.065 0.114 0.169
500 0.012 0.056 0.099 0.027 0.070 0.117 0.038 0.092 0.142 0.048 0.095 0.142
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Table 2 
Power of the z(MA) test for an MA unit root (2000 replications) 
 

Known long-run relation or single series 
 m=2 m=4 m=6 m=8 

1φ =0.5, θ =0.8 
T 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%

100 0.432 0.518 0.553 0.556 0.595 0.618 0.579 0.604 0.630 0.582 0.600 0.624
200 0.756 0.826 0.851 0.867 0.885 0.893 0.881 0.888 0.897 0.887 0.892 0.899 
300 0.911 0.946 0.957 0.969 0.973 0.977 0.972 0.974 0.976 0.972 0.974 0.977 
500 0.988 0.994 0.994 0.997 0.997 0.997 0.996 0.997 0.997 0.998 0.998 0.998 

1φ =0.5, θ =0.9 
100 0.162 0.242 0.288 0.286 0.346 0.384 0.334 0.359 0.395 0.339 0.367 0.402
200 0.350 0.508 0.584 0.618 0.678 0.702 0.665 0.696 0.718 0.688 0.706 0.727 
300 0.566 0.714 0.785 0.813 0.855 0.872 0.854 0.876 0.884 0.866 0.879 0.890 
500 0.828 0.924 0.952 0.970 0.980 0.983 0.982 0.987 0.987 0.984 0.988 0.990 

 
Regression  residuals 

1φ =0.5, θ =0.8 
100 0.421 0.494 0.530 0.529 0.558 0.581 0.546 0.559 0.581 0.550 0.568 0.589
200 0.732 0.790 0.809 0.817 0.837 0.852 0.829 0.843 0.856 0.834 0.845 0.856 
300 0.888 0.927 0.937 0.942 0.951 0.955 0.948 0.953 0.959 0.950 0.955 0.960 
500 0.988 0.993 0.994 0.995 0.996 0.996 0.995 0.996 0.996 0.995 0.995 0.996 

1φ =0.5, θ =0.9
      

100 0.169 0.241 0.272 0.276 0.310 0.347 0.305 0.332 0.357 0.310 0.341 0.370
200 0.358 0.494 0.553 0.561 0.622 0.657 0.613 0.643 0.674 0.630 0.653 0.675 
300 0.575 0.717 0.775 0.792 0.827 0.848 0.831 0.855 0.866 0.842 0.856 0.864 
500 0.850 0.912 0.929 0.947 0.957 0.959 0.955 0.958 0.963 0.959 0.961 0.963 
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Table 3 
Cointegration test for selected equations from the ESU01 model of the Singapore 
economy (Abeysinghe and Choy, 2007) 
 

Equation in the model T ρ̂  ARMA(1,1) ADF z(MA) 
(i) Regression Residuals      
   Consumption 104 0.67 0.70, 0.99 -4.48* -0.77 
   Exports (non oil domestic) 96 0.54 0.56, 0.99 -5.27* 0.63 
   Employment 96 0.86 0.88, 0.99 -2.41 0.51 
   Wages  96 0.89 0.87, 0.99 -2.94 0.49 
   CPI 96 0.93 0.95, 0.99 -2.01 0.05 
(ii) Known coefficients (log form)      
   Oil import price in S$ 104 0.89 0.85, 0.99 -2.43 -1.49 
   Oil export price in S$ 104 0.76 0.79, 0.99 -3.68* 0.42 
   RUBC 96 0.91 0.93, 0.99 -2.17 0.25 
   RER 336 0.98 0.00, -0.25 -2.39 -9.03* 
RUBC=relative unit business cost. RER=real exchange rate (S$/US$, CPI based). Oil price relationships 
are: oil price in Singapore dollars equals oil price in US$ times the Sin/US exchange rate. The first eight 
series are quarterly from 1978Q1 or 1980Q1 to 2003Q4. RER is monthly over 1975-2003. The null for 
z(MA) is stationarity (MA unit root) and that for ADF is non-stationarity (AR unit root). * significant at 
the 5% level (left-tail test). 
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Table 4 
Cointegration test on APC 
 

 29

ˆCountry 

Sample 
period 

(quarterly) T 
AR 

Lags 
AR 

Coefficients ρ ARMA(p,1) ADF
Johansen 
VAR(4) 

 
 

KPSS
z(MA)
m=4 

Australia 1960-2007 192 1 0.92 0.92 0.94, 0.99 -2.71 yes 0.21 0.39 
Austria 1965-2007 172 1,2,3 0.55,0.18,0.18 0.91 0.56, 0.19, 0.20, 0.99 -2.33 no 0.14 0.34 
Belgium 1980-2007 111 1 0.98 0.98 0.00, 0.12 -0.77 no 1.09* -5.37*
Canada 1957-2007 204 1 0.97 0.97 0.97, 0.99 -1.97 no 0.73* -0.30
Denmark 1978-2007 124 1,4 0.75, 0.21 0.96 0.75, 0.17, 0.99 -1.71 yes 1.02* -0.57
Finland 1970-2007 152 1,4 0.71, 0.21 0.92 0.72, 0.19, 0.99 -2.21 no 1.00* -1.41
France 1978-2007 120 1 0.94 0.94 0.97, 0.99 -2.1 yes 0.49* 0.48 
Germany 1961-2007 188 1,3 0.71, 0.23 0.94 0.72, 0.23, 0.99 -1.99 yes 0.87* -1.13 

Italy 1970-2007 151 1,4 0.70, 0.12 0.82 0.66, 0.99 -2.98* yes 0.95* -0.5 
Japan 1965-2007 172 1 0.94 0.94 0.95, 0.99 -2.45 no 0.18 -1.29
Korea, South 1965-2007 172 1 0.97 0.97 0.00, 0.20 -2.45 no 1.38* -6.51*
Mexico 1981-2007 108 1 0.88 0.88 0.88, 0.99 -2.62 no 0.40 -0.14
Netherlands 1977-2007 124 1,2 0.51, 0.46 0.97 0.35, 0.25 -0.78 no 1.03* -5.75*
New Zealand 1987-2007 82 1 0.72 0.72 0.75, 0.99 -3.69* yes 0.09 0.58 
Norway 1961-2007 188 1,2 0.75, 0.23 0.98 0.00, 0.25 -0.83 no 1.31* -6.52*
Spain 1970-2007 152 1,4 0.79, 0.20 0.99 0.00, 0.24 -0.06 no 1.41* -6.66*
Sweden 1980-2007 112 1,2,4 0.66, 0.39, -0.17 0.88 0.61, 0.41, -0.17, 0.99 -2.21 no 0.43 -0.81
Switzerland 1970-2007 152 1,2,3 0.60, 0.51, -0.18 0.94 0.59, 0.53, -0.16, 0.99 -1.81 no 0.16 -1.11
Turkey 1987-2007 83 1 0.62 0.62 0.57, 0.99 -4.23* yes 0.49* 0.36 
UK 1957-2007 204 1,3 0.73, 0.24 0.97 0.73, 0.25, 0.99 -1.55 yes 0.44 1.21 
US 1957-2007 204 1,2 0.83, 0.17 1.00 0.00, 0.17 -0.18 no 1.62* -7.29*
Note that some data series end in Q2 or Q3 in 2007. Tests are based on log(APC) = log(C/Y), where C is 
total consumption expenditure and Y is GDP, both in nominal terms and seasonally adjusted. For the 
Johansen test “yes” means acceptance of cointegration between log(C) and log(Y) with the cointegrating 
vector (1, -1). For the KPSS test the default settings in Eviews were used. * Significant at the 5% level. 



Table A.1 
 Power of unit root tests at the 5% level and T=100. Reference model: 2

1 1 ,  ~ (0, )t t t t ty t y iidα β ρ ε θε ε σ− −= + + + −   
(When T=100 is not available 200 is used and marked with an asterisk against author’s name) 
 
(a) Non-stationary null (ρ = 1) 
Name of Authors Year Model Type Test Type ρ = 0.80 0.85 0.90 0.95 0.975 Remarks 
Dicky & Fuller 1979 θ=0, β=0 ρ̂  0.86  0.30 0.10  

DF test, AR(1) process   θ=0, β=0 t 0.73  0.18 0.06  
Bhargava  1986 θ=0, β=0 DW  0.73 0.49 0.25 0.10  Also Sargan & Bhargava 1983 
Phillips & Perron 1988 θ=0, β=0 t  0.47    ADF, Said & Dicky 1984 
  θ=0.8, β=0 t  0.30    ADF 
  θ=0, β=0 Z(t)  0.69    PP 
  θ=0.8, β=0 Z(t)  0.35    PP 
Pantula & Hall* 1991 θ=0, β=0 IV     0.09-0.33 Range of IV estimates. In 

general power > 0.05   θ=0.8, β=0 IV     0.01-0.35
DeJong et al. 1992 θ=0, β≠0 τ(ρ) 0.75 0.49 0.24 0.10  For starting value 0. Power 

drops slightly as starting value 
increases.    F(β,ρ) 0.65 0.39 0.19 0.08  

Blough 1992 θ=0, β=0 ADF, IV      
Graphical presentation. Power 
drops to 5% for ρ>0.5. 

Schmidt & Phillips 1992 θ=0, β≠0 LM   0.27 0.108  
Reported is highest power 
under different specifications 

Choi 1992 θ=0, β≠0 DH 0.97 0.84 0.54 0.24  Durbin-Hausman 
Lee & Schimidt 1994 θ=0.8, β=0 IV    0.22  Compares Hall-IV with SP-IV 
Pantula et al. 1994 θ=0, β=0 WS   0.602 0.261  Compares OLS, MLE as well. 
Yap & Reinsel * 1995 θ=0, β=0 LR 1.00  0.82 0.33   
  θ=0.8, β=0 LR -  0.74 0.56   
Leybourne 1995 θ=0, β=0 DFmax 0.88  0.34    

 30



Table A.1 continued 
Name of Authors Year Model Type Test Type ρ = 0.80 0.85 0.90 0.95 0.975 Remarks 

Park & Fuller 1995 θ=0, β=0       

Graphical. For intercept  model: 
WS>SS>OLS. For interceptless 
model: OLS>SS>WS. 
(SS=simple symmetric, 
WS=weighted symmentric) 

Perron & Ng * 1996 θ=0.8, β=0 MZ(ρ)   0.75 0.42  

Modified PP 
   MSB   0.79 0.46  
   MZ(t)   0.63 0.30  

Elliot et al. 1996 θ=0.8, β=0 t 0.51  0.30 0.15  
Power at ρ=0.95 not very 
different across models  

Hwang & Schmidt 1996 θ=0, β≠0 GLS 0.28 0.18    
Power is roughly similar across 
different tests reported 

          
Non-stationary null: Structural breaks
Lanne & Lutkepohl 2002 Perron    0.21   

Known break, level shift. Power 
is very similar for slope change. 
See the article for model 
specification. 

  Perron & Vogelsang   0.14   
  Amsler & Lee   0.12   
  Schmidt & Phillips   0.09   
  Lanne et al   0.23   
Lanne et al. 2003 Test 1, drift   0.28   

Unknown break, level shift. 
Power is very similar for slope 
change. See the article for 
model specification. 

  Test 2, drift   0.20   
  Test 3, trend   0.23   
  Test 3, trend   0.18   
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(b) Stationary null (ρ = 1, θ = 1) 
Name of Authors Year Model Type Test Type θ* = 0.80 0.85 0.90 0.95 0.975 Remarks
Park 1990  J1 test      No simulation results 
Kwiatkowski et al. 1992 β=0 η(μ) l0   0.59  0.17 

KPSS test. The test basically 
involves testing 2

ησ  = 0 in 
model (1) in Section 3. 

  β=0 η(μ) l4   0.51  0.15 
  β=0 η(μ) l12   0.38  0.10 
  β≠0 η(τ) l0   0.35  0.05 
  β≠0 η(τ) l4   0.28  0.05 
  β≠0 η(τ) l12   0.17  0.04 

Saikkonen & Luukkonen 1993 β=0 R2 0.81 0.71 0.56 0.32  
Authors also consider non-
white errors. 

Breitung 1994 β=0 Spectral 0.04  0.03 0.03   
   Var diff 0.87  0.43 0.16   
   Tanaka 0.86  0.62 0.32   
Leybourne and McCabe 1994 Extended 

KPSS  
 

s(α) p=1   0.61  0.17 Show that KPSS is subject to 
severe size distortions in 
general ARIMA cases. 

  s(α) p=2   0.59  0.17 
  s(α) p=3   0.56  0.16 
Choi 1994 β=0 w1 l=2 0.47     

Power remains low for other 
lags on w2 test 

   w1 l=3 0.38     
   w1 l=4 0.27     
   w1 l=5 0.06     
  β≠0 w2 l=1 0.08     
Note: * θ values given here are implicit of many of these models.  

Table A.1 continued 
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