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Abstract 
 
The evolution of volatility and correlation patterns of the Malaysian ringgit and the 
Singapore dollar are analyzed in this paper.  Our approach can simultaneously capture 
the empirical regularities of persistent and asymmetric effects in volatility and time-
varying correlations of financial time series.  Consistent with the results of Tse and Tsui 
(1997), there is only some weak support for asymmetric volatility in the case of the 
Malaysian ringgit when the two currencies are measured against the US dollar.  
However, there is strong evidence that depreciation shocks have a greater impact on 
future volatility levels compared with appreciation shocks of the same magnitude when 
both currencies measured against the yen.  Moreover, evidence of time-varying 
correlation is highly significant when both currencies are measured against the yen.  
Regardless of the choice of the numeraire currency and the volatility models, shocks to 
exchange rate volatility are found to be significantly persistent. 
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1. Introduction 

Following the seminal work of Engle (1982) and Bollerslev (1986), modelling the 

time-varying conditional volatility of financial time series by the generalized 

autoregressive conditional heteroscedasticity (GARCH) type of models has generated 

tremendous applications in the past two decades.  The GARCH-type models are 

important as they can successfully capture the stylized fact in finance that large changes 

in many asset prices tend to be followed by other large changes, while small changes 

are usually followed by other small changes.  This phenomenon is now commonly 

known as volatility clustering.  A voluminous literature has developed on the estimation 

and forecasting of volatility with GARCH-type models, and their specific applications in 

empirical asset pricing, financial risk management, and option pricing and hedging.  

Among others, some important papers include Bollerslev et al. (1988), Campbell and 

Hentschel (1992), Christoffersen and Diebold (2000), Duan (1995, 1997), French et al. 

(1987), Glosten et al. (1993), Maheu and McCurdy (2004), Pagan and Schwert (1990), 

and Schwert (1989).  Moreover, there are many survey articles that provide detailed 

discussion of GARCH-type models and their scope of research.   See, for example,  

Bollerslev et al. (1992), Bera and Higgins (1993), Campbell et al. (1997), Engle (2002), 

Li  et al. (2002), and more recently Bauwens et al. (2006). 

 

Other than asset pricing and risk management, GARCH-type models are also 

employed to analyze the volatility dynamics of foreign exchange rates.  Among others, 

see Hsieh (1989a, 1989b, 1993), Bollerslev (1990), Baillie and Bollerslev (1994), Baillie, 

Bollerslev, and Mikkelsen (1996), Tse and Tsui (1997), Tse (1998) and Tsui and Ho 

(2004), respectively.  Several well-established empirical regularities may be highlighted: 

[a] evidence of volatility clustering is detected in exchange rate returns; [b] unlike stock 

market volatility, asymmetric responses to positive versus negative shocks of the same 
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magnitude in exchange rate volatility are not common; and [c] exchange rate volatility 

may display significant persistence and dependence between observations, a 

phenomenon commonly described as long-range dependence or long memory.  In 

particular, Tse and Tsui (1997) examine the conditional volatility of the exchange rates of 

the Malaysian ringgit and the Singapore dollar against the US dollar using the univariate 

asymmetric power ARCH model proposed by Ding, Granger, and Engle (1993).  They 

find evidence of negative asymmetric effects in the Malaysian ringgit.  More recently, 

Tsui and Ho (2004) detect evidence of asymmetric volatility in the Malaysian ringgit and 

the Singapore dollar using univariate fractionally integrated GARCH-type models.  

However, such established findings are based on univariate GARCH-type models and 

on the bilateral USD rates.  Little work has been done on foreign exchange rates with 

different choice of numeriare currency and GARCH-type structures in a multivariate 

framework. 

 

While the univariate GARCH-type models may appear reasonably adequate for 

capturing the volatility dynamics in exchange rates, they are not tailored to 

accommodate co-movements in foreign exchange volatility.  Several academics and 

practitioners have noted that exchange rates are significantly correlated and these 

correlations can influence currency trading strategies (see Lien (2005, 2006), Jiang, Ma, 

and Cai (2007), Muniandy and Uning (2006), and Mizuno et al. (2006)).  Therefore, it is 

imperative to understand how different pairs of currencies move with one other over 

time.  By keeping track of these co-movements, traders can understand their exposure 

to exchange rate risk.  An example given in Lien (2006) illustrates that an effective 

foreign exchange trader should understand his/her overall portfolio's sensitivity to market 

volatility.  The main reason is that “currencies are priced in pairs, no single pair trades 

completely independently of the others.”  Once a trader knows about their correlations 
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and the pattern of changes over time, he/she can take advantage of them to control the 

portfolio's exposure.  As such, it is important to analyze currency volatility in a 

multivariate framework in order to accommodate the potential interdependencies 

between the exchange rates. 

 

Moreover, it has been frequently argued that information transmission from one 

foreign exchange market to another can influence currency volatility.  In particular, 

Engle, Ito and Lin (1990) argue that volatility in one foreign exchange market is 

transmitted to other markets like a “meteor shower”, while Ross (1989) shows that 

volatility in asset returns depends upon the rate of information flow.  Since the rate of 

information flow and the time used in processing that information varies with each 

individual market (sector), one should expect different volatility patterns across markets 

(sectors).  The increasing integration of major financial markets has generated strong 

interest in understanding the volatility spillover effects from one market to another.  

These volatility spillovers are usually attributed to cross-market hedging and change in 

common information, which may simultaneously alter expectations across markets.  

Apparently, a multivariate framework to capture such features is more appropriate. 

 

Empirically there are limited studies on the volatility dynamics of exchange rates 

by the MGARCH-type models. The main obstacle is due to the computational difficulties 

in estimating the increased number of parameters and there is no guarantee of the 

positive-definiteness for the conditional variance-covariance matrix during optimization.  

Bollerslev (1990) proposes the constant-correlations (CC)-MGARCH model, which 

automatically guarantees the positive-definiteness of the variance-covariance matrix 

once convergence is achieved.  However, this approach is quite restrictive and has not 

been successful in several studies (see, for example, Tsui and Yu (1999), Tse (2000), 
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Engle and Sheppard (2001), Bera and Kim (2002), and McAleer et al. (2008)).   A 

multivariate version that is different from the CC-MGARCH model is previously proposed 

by Engle, Granger, and Kraft (1984), who derive the necessary conditions for the matrix 

of the model to be positive-definite; however, generalizing this model to higher 

dimensions is rather intractable.  Alternatively, Bollerslev, Engle, and Wooldridge (1988) 

propose the vech-representation, which is an extension of the univariate GARCH 

representation to the vectorized conditional variance-covariance matrix.  However, 

conditions that guarantee the positive-definiteness of the variance-covariance matrix are 

difficult to sustain during optimization.   Moreover, Engle and Kroner (1995) introduce the 

Baba-Engle-Kraft-Kroner (BEKK) model, which automatically guarantees the positive-

definiteness of the variance-covariance matrix once parameter estimates are obtained.  

Another approach looks into the conditional volatility of different assets as a factor 

model; see Diebold and Nerlove (1989), Engel and Rodrigues (1989) and Engle, Ng, 

and Rothschild (1990) for details. However, the shortcomings of the BEKK and factor 

models are that the parameters cannot be easily estimated and interpreted, and their net 

impact on the future variance and covariance are not readily observed. In addition, the 

increasing number of parameters to be estimated under the BEKK and factor-GARCH 

models exacerbates the difficulties of achieving convergence in parameter estimation.  

For example, Bera  et al. (1997) report that the BEKK model does not perform well in the 

estimation of the optimal hedge ratios, and Lien et al. (2002) report difficulties in 

obtaining meaningful estimates of the BEKK model during optimization.  For a detailed 

comparison of these MGARCH-type models, see Bauwens et al. (2006).  

   

In this paper, we follow up on the study of asymmetric volatility of two currencies 

in the Asia-Pacific markets by Tse and Tsui (1997), namely the Malaysian ringgit and the 

Singapore dollar.  To ensure consistency in comparison, we confine our investigation to 
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the GARCH-type models.  Instead of using univariate APARCH models by Tse and Tsui 

(1997), we employ the MGARCH framework of Tse and Tsui (2002) to create a family of 

bivariate MGARCH models which can concurrently capture the stylized features of 

volatility asymmetry, long-range persistence in volatility, and time-varying correlations. 

The proposed models automatically ensure the positive definiteness of the conditional 

variance-covariance matrix once convergence is obtained.  One added advantage of the 

Tse and Tsui approach is that the parameter estimates are relatively easy to interpret, as 

the univariate GARCH-type equations are retained. Unlike Bollerslev’s (1990) constant 

correlation MGARCH model, the included time-varying conditional correlations in the 

proposed models can map out the time-path of conditional correlations between the two 

currencies.  We also investigate the behaviour of long-memory persistence in volatility of 

the Malaysian ringgit and the Singapore dollar using fractionally integrated GARCH-type 

models.  The fractionally integrated models help to distinguish between long persistence 

and exponential decay in the impacts of exchange rate volatilities.   

 

Furthermore, we examine the robustness of the volatility dynamics of the two 

currencies against the Japanese yen as alternative numeraire currency besides the US 

dollar.  We are motivated by several studies on the sensitivity of alternative numeraire 

currency.  See, for example, Papell and Theodoridis (2001), Zambrano (2005), and 

Norrbin and Pipatchaipoom (2007), respectively. In particular, Papell and Theodoridis 

(2001) demonstrate that choice of different numeraire currency can have significant 

impacts on purchasing power parity (PPP).  They find that PPP is stronger for European 

than for non-European base currencies, and the volatility of the exchange rate is one of 

the key determinants of such a finding.  In addition, Schlossberg (2007) provides several 

examples in trading in cross rates where the Japanese yen is used as numeraire for the 
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Canadian dollar, the New Zealand dollar and the British pound, respectively. He argues 

that “trading in currency crosses can provide a multitude of profitable opportunities.”  

The rest of the paper is organized as follows. In Section 2, we present the 

methodology of synthesizing features of volatility asymmetry, long-memory and time-

varying correlations in a bivariate GARCH framework.  Section 3 briefly describes the 

data sets used and the estimation results.  Section 4 provides some concluding remarks. 

 
 
 
2. Methodology 
 

In what follows we first briefly describe the gist of the bivariate GARCH(1,1) 

model with time-varying conditional correlations (VC-GARCH) proposed by Tse and Tsui 

(2002). We then incorporate two different structures of asymmetric volatility and long 

memory into the conditional variance equations so as to synthesize the bivariate 

GARCH-type models.    

 

Let yt = (y1t, y2t)’ be the bivariate vector of variables with time-varying variance-

covariance matrix Ht, and let μit(ξi) be the arbitrary conditional mean functions which 

depend on ξi, a column vector of parameters.  A typical bivariate GARCH(1,1) model can 

be specified as follows: 

2,1,)( =+= iy itiitit εξμ        (1) 

where ),(~Φ|)',( 121 tttt HO−εε                              (2) 

Note that Φt is the σ-algebra generated by all the available information up to time t. The 

random disturbance terms εit and the conditional variance equations hiit are modelled as 

follows: 
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,itiitit eh=ε  where )1,0(~ Neit        (3) 

1
2
1 −− ++= iitiitiiiit hh βεαη         (4) 

where (4) is the standard  Bollerslev’s (1986) symmetric GARCH(1,1) model.  

 

Denote the ij-th element (i, j = 1, 2) in Ht by hijt. The conditional correlation 

coefficients can be defined as
jjtiit
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ijt hh
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=ρ .  Essentially, Tse and Tsui (2002) assume 

that the time-varying conditional correlation matrix { }ijtt ρ=Γ is generated by the 
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The conditional correlation equation in (5) inherits the prototype property of GARCH(1,1) 

structure, and it nests Bollerslev’s (1990) constant-correlations GARCH (CC-GARCH) 

structure when π1 = π2 = 0.  Hence, the likelihood ratio test can be readily applied to 

compare the performance of both models. 

 

Owing to computational difficulties, there are few empirical studies on long-range 

temporal dependence.  See Tse and Tsui (1997), Teyssiere (1997, 1998), and Brunetti 

and Gilbert (2000), among others.  These studies have mainly applied the multivariate 

version of the fractionally integrated symmetric GARCH (FIGARCH) model of Baillie, 

Bollerslev, and Mikkelsen (1996) to stock market and exchange rate data. However, they 
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often exclude the issue of asymmetric conditional volatility, and for convenience, they 

adopt the assumption of constant conditional correlations in the volatility structure.   In 

what follows, we incorporate the structures of asymmetric volatility and long memory 

dynamics into the VC-GARCH model by modifying the symmetric conditional variance 

equation in (4).  To maintain consistency in comparison, we choose two well-established 

asymmetric structures among the GARCH-type models.  They include: the asymmetric 

GARCH (1,1) (AGARCH (1,1)) model proposed by Engle (1990) and the asymmetric 

power ARCH (1,1) (APARCH (1,1)) model of Ding, Granger, and Engle (1993), 

respectively.  Indeed, Tse and Tsui (1997) use the APARCH (1,1) model to capture the 

possibly asymmetric effects of exchange shocks on future volatilities.  In addition, these 

asymmetric GARCH-type models are less restrictive in assumptions and are more 

flexible to accommodate alternative variations.  Their main features are briefly 

summarized as follows: 

[a] Engle’s (1990) asymmetric GARCH(1,1) (AGARCH(1,1)) model: 

1
2

1 )( −− +−+= iitiiitiiiit hh βγεαω        (8) 

where γi is the asymmetric coefficient.  When γi  = 0, (8) becomes the GARCH(1,1) model 

and when βi = 0, it becomes the prototype ARCH(1) model.     

[b] Ding, Granger, and Engle’s (1993) asymmetric power ARCH(1,1) (APARCH (1,1)) 

model. 

2
111

2 )|(| iii
iitiitiitiiiit hh δδδ βεγεαη −−− +−+=                  (9) 

where γi is the asymmetric coefficient.  When δi = 1, equation (9) becomes the threshold 

GARCH(1,1) model, which includes an asymmetric version of the Taylor/Schwert 

(1986/1989) model and Zakoian’s (1994) threshold ARCH model.  When δi = 2, it 

becomes the leveraged GARCH model, which nests the GJR model of Glosten, 
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Jaganathan and Runkle (1993).  When δi approaches 0, Ding, Granger, and Engle 

(1993) show that (9) becomes the logarithmic GARCH(1,1) model, thereby incorporating 

an asymmetric version of the Geweke/Pantula (1986) model.  We note in passing that 

although the APARCH structure nests 7 models together (see Ding, Granger, and Engle 

(1993) for details), it does not nest the AGARCH model.   

 

Turning to the structure of long-memory dynamics in volatility, we may transform 

the conditional variance equations in (4), (8) and (9) so that they are fractionally 

integrated.  We follow the methodology by Baillie et al. (BBM) (1996).   Below is a 

summary of the conditional variance equations for three fractionally integrated (FI) 

GARCH-type models obtained by the BBM approach.   

[a]Fractionally integrated GARCH(1,1) model (FIGARCH(1,d,1))  

2)(
1 iti

i

i
iit Lh ελ

β
η

+
−

=          (10) 

where id
iia

a
iai LLLLL )1)(1()1(1)( 1

1
−−−−== −∞

=∑ φβλλ .  

 

[b] Fractionally integrated asymmetric GARCH(1,1) model ((FIAGARCH)(1,d,)) model  

2))((
1 iiti

i

i
iit Lh γελ

β
ω

−+
−

=         (11) 

where )(Liλ is defined as in (10).  Note that (11) is similar to the FIGARCH(1,d,1) model 

in (10), except that it allows past return shocks to have asymmetric effects on the 

conditional volatility. 

 

[c] Fractionally integrated APARCH(1,1) model (FIAPARCH(1,d,1)) 



 11

ii
itiiti

i

i
iit Lh δδ εγελ

β
η )|)(|(
1

2 −+
−

=        (12) 

where )(Liλ is defined as in (10).  Similar to the FIAGARCH(1,d,1) model in (11), (12) 

allows past shocks to have asymmetric effects on the conditional volatility. Details of the 

derivations are given in Tsui and Ho (2004).  

 

The parameters of these bivariate fractionally integrated GARCH-type models 

can be estimated using Bollerslev-Wooldridge’s (1992) quasi-maximum likelihood 

estimation (QMLE) approach. Appropriate assumptions for the start-up conditions are 

made to facilitate convergence of the QMLE optimization process.   These include the 

computation of )(Liλ , the number of lags, and the initial values.  For instance, the 

response coefficients for each of the fractionally integrated GARCH-type models  

id
iia

a
iai LLLLL )1)(1()1(1)( 1

1
−−−−== −∞

=∑ φβλλ  are computed by adopting the 

following infinite recursions given in Bollerslev and Mikkelsen (1996): 

∞=−−−+=

+−=

−− ,...,2,]/)1[(

,

11

1

bbdb

d

ibiiibiib

iiii

ζφλβλ

βφλ
    (13) 

where bdb iibib /)1(1 −−= −ζζ , with ii d=1ζ  

As can be observed from (13), when b approaches infinity, an adequate finite truncation 

is necessary to secure the long-memory dynamics.  We have sampled the 1000 and 

2000 lags, respectively; and found that the parameter estimates trimmed at 1000 lags 

are reasonably close to those trimmed at 2000 lags. To save the computational time, we 

truncate )(Liλ  after the first 1000 lags. 
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On the choice of initial values, we set the pre-sample observations 2
itε  to the 

unconditional sample variance for the FIGARCH(1,d,1) model. As for the bivariate 

FIAGARCH(1,d,1) model, the pre-sample observations of 22 )()( iititg γεε −= are 

equated to the sample mean of 2)ˆˆ( iit γε − , where iγ̂ is the estimate of γ  based on the 

univariate FIAGARCH(1,d,1) model.  In the case of the bivariate FIAPARCH(1,d,1) 

model, the pre-sample observations of ii
itiititg δδ εγεε )|(|)( −= are equated to the 

sample mean of i
itiit

δεγε ˆ)ˆˆ|ˆ(| − , where iγ̂ and iδ̂ are the estimates of iγ  and iδ based on 

the univariate FIAPARCH(1,d,1) model.  

 

We shall investigate 6 different model specifications, including 3 basic symmetric 

and asymmetric GARCH-type models and their extensions to the corresponding 

fractionally integrated GARCH-type models.  We then apply these univariate models 

individually to the Malaysian ringgit and the Singapore dollar against the dollar or the 

yen, thereby obtaining 6 bivariate CC-MGARCH-type models and 6 bivariate VC-

MGARCH-type models, respectively. 

 

 

3. Data and Estimation Results 

 Our data sets consist of 2998 daily observations of the Malaysian ringgit (MYR) 

and the Singapore dollar (SGD), covering the period from 2 January 1986 to 30 June 

1997.  More recent observations are excluded to avoid the possible distortions caused 

by the outbreak of the 2-year Asian financial crisis since July 1997.  The exchange rates 

against the US dollar (USD) are obtained directly from DataStream International and 

details of these series are discussed in Tsui and Ho (2004).  Owing to the non-
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availability of the bilateral Japanese yen (JPY) exchange rates for the period under 

study, we utilize the implied cross rates instead.  They are obtained by dividing the 

exchange rate of a nation’s currency against the US dollar with the Japanese yen-US 

dollar (JPY/USD) exchange rate.   

 
The daily nominal exchange rate returns expressed in percentage are computed 

on a continuously compounding basis as: 

100)log(
1

×=
−t

t
t S

Sy          (14) 

where St is the daily exchange rate.   We assume that the conditional mean equation is 

captured by a lower-order autoregressive filter with lag order p: 

2,1,
10 =++= −

=∑ iyy itait
p

a iatit εξξ       (15) 

 

Table 1 provides a summary of the descriptive statistics of yt for the two 

currencies measured against the dollar or the yen.  For a standard normal distribution, 

the skewness and kurtosis have values of 0 and 3, respectively. As can be observed 

from Panel A of Table 1, all differenced logarithmic series have kurtosis greater than 3.  

In particular, the MYR and SGD exhibit much higher kurtosis when they are measured 

against the dollar.  Figures 1-2 present the plots of the exchange rates of the two 

currencies and their returns series against the dollar and the yen, respectively.  It can be 

observed that the return series are centred about zero and the amplitude of the returns 

is changing.  The magnitude of the changes is sometimes large (small) following the 

previous large (small) ones over the sample period, thereby reflecting the stylized fact of 

volatility clustering. 
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Figure 1. Malaysian Ringgit  (MYR) and Singapore Dollar (SGD) against the US dollar (USD) 
 

 
Figure 2. Malaysian Ringgit  (MYR) and Singapore Dollar (SGD) against the Japanese Yen (JPY) 
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Table 1.  Summary Statistics of Exchange Rates against the Japanese Yen and the US Dollar 
Variable MYR/JPY SGD/JPY MYR/USD SGD/USD 

Mean 0.0198 0.0053 0.0015 -0.0130 
Median 0.0000 -0.0058 0.0000 0.0000 

Maximum 4.9830 4.6842 2.3736 2.0232 
Minimum -3.9626 -3.8903 -2.9363 -2.2501 
Std. Dev. 0.6822 0.6340 0.2555 0.2538 
Skewness 0.4145 0.3571 -0.2254 -0.3627 
Kurtosis 6.9749 6.6848 24.1763 10.3654 

Observations 2997 2997 2997 2997 
Q1(5) 9.1017 10.6973 49.1369 68.9244 
Q1(10) 40.4815 37.4101 88.6244 79.6134 
Q2(5) 158.1128 27.4757 651.4362 181.8517 
Q2(10) 229.7626 38.9931 1196.7779 196.8995 
Q3(5) 32.9668 27.4292 447.1970 152.7907 
Q3(10) 43.1101 42.0719 592.3810 159.6123 

BDS(e=3,l=1.5) 7.5261 6.3680 16.2961 14.0798 
BDS(e=4,l=1.5) 9.0158 7.5216 16.7226 14.8928 
BDS(e=5,l=1.5) 9.6963 8.0265 16.9930 15.4110 
BDS(e=3,l=1.0) 7.8580 6.5282 15.8300 14.0291 
BDS(e=4,l=1.0) 9.1719 7.5098 16.8401 15.7770 
BDS(e=5,l=1.0) 10.0651 8.1987 17.7326 17.1760 

R1 3.8623 2.9018 0.4672 3.3028 
R2 -5.3707 -5.0340 -8.4397 -7.9397 
R3 -4.2167 -2.1550 -10.5792 -7.6008 

Notes: 
1.   JPY = Japanese Yen, MYR = Malaysian ringgit, SGD = Singapore dollar, USD = US dollar 
2.   Q(m) refers to the Ljung-Box Q-statistic with m degrees of freedom.  Qi for i = 1, 2, 3 denote the series yt, 
|yt|, and yt

2 respectively. 
3.  For the BDS Test, e represents the embedding dimension whereas l represents the distance between 
pairs of consecutive observations, measured as a multiple of the standard deviation of the series. Under the 
null hypothesis of independence, the test statistic is asymptotically distributed as standard normal. 
4.  For the Runs Test, Ri for i = 1, 2, 3 denote the runs tests of the series yt, |yt|, and yt

2 respectively. Under 
the null hypothesis that successive observations in the series are independent, the test statistic is 
asymptotically standard normal. 
 
 
 
Table 2.  Unit Root Tests 

Exchange Rate ADF Model ADF Test Statistic Q-statistic (20 lags) PP Statistic 
MYR/JPY Case 3 (20) -10.2777 0.4246 -57.8322 
SGD/JPY Case 3 (20) -10.7728 0.4151 -58.1493 
MYR/USD Case 3 (20) -11.1393 0.9246 -58.1271 
SGD/USD Case 3 (20) -10.7799 0.5067 -63.4835 

Notes: 
1. ADF Model: Case 1 refers to the regression equation without any deterministic regressors; Case 2 

refers to the equation with intercept; Case 3 refers to the equation with both the intercept and the 
deterministic time trend. The figure in parenthesis highlights the number of lagged difference terms.  

2. For the PP test, both intercept and time trend are included and 8 truncation lags are chosen. It is found 
that the results are robust to different lag lengths. 

3. Q statistic refers to the Ljung-Box Q-statistic with 20 degrees of freedom. 
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As displayed in Table 2, the augmented Dickey-Fuller and Phillips-Perron tests 

are all insignificant at the 5% level, thereby indicating that the return series of the MYR 

and SGD are stationary.  However, the Ljung-Box Q-statistics and the BDS test statistics 

(Brock, Dechert, and Scheinkman (1996)) suggest that both foreign exchange series are 

not independently and identically distributed. In addition, as can be seen from Table 1, 

the highly significant Lung-Box Q statistics and the runs tests consistently indicate the 

presence of conditional heteroscedasticity in the return series.  As such, the GARCH-

type modelling of the volatility structures may be appropriate. 

 

We shall estimate the conditional mean, variance and correlation components of 

the proposed bivariate GARCH-type models simultaneously using Bollerslev and 

Wooldridge’s (1992) quasi maximum-likelihood estimation (QMLE) procedure coded in 

Gauss version 5.0.  The QMLE approach provides consistent estimators even for non-

normal errors with a thick-tailed distribution. For the mean equation, we find that the 

parsimonious AR(1) model is a reasonably adequate filter, taking into consideration of 

the log-likelihood values and the residual checks. To save space, we report only 

estimates of the conditional variance and correlation equations from the following 

models: the VC-GARCH, VC-AGARCH, VC-APARCH, VC-FIGARCH, VC-FIAGARCH 

and the VC-FIAPARCH, respectively.  Except for the correlation coefficients and the log-

likelihood values, most of the parameter estimates from the constant-correlation models 

are omitted. The complete set of estimation results is available upon request.  

  

Tables 3-8 summarize the QMLE of the parameters of the bivariate VC-GARCH, 

VC-APARCH, VC-AGARCH, VC-FIGARCH, VC-FIAPARCH and VC-FIAGARCH 

models, respectively.  We first discuss the evidence of asymmetric volatility.  For the 

currencies against the dollar, only the Malaysian ringgit exhibits asymmetric volatility 
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under the VC-FIAPGARCH model, whereas there is no evidence of asymmetric effects 

for the SGD. Our results are consistent with the findings by Tse and Tsui (1997), and 

Tsui and Ho (2004), respectively.  In particular, Tse and Tsui (1997) report that the 

depreciation shocks of MYR/USD generate greater future volatilities compared to 

appreciation shocks of the same magnitude.  In contrast, when the yen is used as the 

numeraire currency, we detect significant evidence of negative asymmetric volatility for 

the SGD based on all of the GARCH-type models.  As for the MYR, except for the VC-

AGARCH model, we do not detect evidence of asymmetric volatility.  Apparently, the 

support of volatility asymmetry is sensitive to the specification of the conditional volatility 

and to the choice of numeraire currency. 

 

The estimated values of fractional differencing parameter (d) of various models 

are reported in Tables 6-8.  Two interesting results are in order.  First, all the estimates 

are statistically significantly different from 0 and 1, indicating that the impact of shocks to 

the conditional volatility displays a hyperbolic rather than exponential rate of decay. This 

result is robust to the choice of the numeraire currency and the models.   Second, most 

of the fractional differencing parameters for the MYR and the SGD are similar across the 

GARCH-type models for a given numeraire currency.  For example, when the dollar is 

used as the numeraire, the estimated values of d for MYR and SGD are 0.4583 and 

0.4428 respectively for the symmetric VC-FIGARCH model; 0.4217 and 0.5690 for the 

asymmetric VC-FIAPARCH model; and 0.4497 and 0.4470 for the asymmetric VC-

FIAGARCH model, respectively.  Similarly, when the yen is used as the numeraire 

currency, the MYR and the SGD have consistently lower estimated values for d within 

the range of 0.20-0.30 than that of the corresponding GARCH-type counterparts under 

the dollar. Moreover, the likelihood ratio test statistics reported in Table 9 are all    
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significant at the 5% level, thereby indicating that the fractionally integrated models are 

more adequate than those without the long memory structure. 

 

To assess the correlation dynamics of the two currencies, we apply the likelihood 

ratio (LR) test to the null hypothesis of π1 = π2 = 0 (see equation (5)). Under the null 

hypothesis, the LR test statistics follows an asymptotic chi-squared distribution with two 

degrees of freedom.  Also, the significance of the estimated values of π1 and π2 are 

examined individually.   As shown in columns 8-13 of Tables 3-8, all the LR tests 

indicate that the null hypothesis of constant conditional correlations is rejected at the 5% 

level of significance, thereby suggesting that the conditional correlations are time-

varying.  Such findings are robust across models.  In contrast, almost all of the individual 

estimates of π1 and π2 are statistically insignificant when the MYR and SGD are 

measured against the dollar; and all individual estimates are significant at the 5% level 

when their exchange rates are based on the yen. This implies that the evidence of time-

varying correlations between MYR/USD and SGD/USD is relatively weaker, and it is 

consistent with Tse’s (2000) conclusion that the hypothesis of constant conditional 

correlation cannot be rejected for the MYR and SGD.  However, we detect strong 

support of time-varying correlations between MYR and SGD when the Japanese yen is 

used as the numeraire currency.   The reason as to why the asymmetric effects are not 

robust to exchange rates under different numeriare currency is still unknown to 

researchers.  Apparently it is a challenging topic for future researchers.  
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Table 3.  Estimation Results of Bivariate VC-GARCH(1,1) Model: ht = η + αε2
t-1 + βht-1; Γt = (1 – π1 – π2)Γ + π1Γt-1 + π2Ψt-1 

Variable η β α Γ π1 π2 LL (VC) Corr (CC) LL (CC) LR 
MYR/USD 0.0031 0.7872 0.1705 0.3782 0.4309 0.1129 6327.2524 0.3591 6305.3816 43.7416 

 (0.0012) (0.0453) (0.0349) (0.0263) (0.7034) (0.0744)  (0.0229)   
SGD/USD 0.0029 0.8595 0.1011        

 (0.0016) (0.0562) (0.0381)        
MYR/JPY 0.0186 0.9013 0.0601 0.9408 0.8715 0.0351 2372.3197 0.9044 2214.5174 315.6046 

 (0.0236) (0.0952) (0.0502) (0.0087) (0.0363) (0.0077)  (0.9044)   
SGD/JPY 0.0147 0.9113 0.0540        

 (0.0133) (0.0586) (0.0293)        
Notes: 
1. All standard errors (in parenthesis) are the heteroskedastic-consistent Bollerslev-Wooldridge standard errors computed based on the  
       Quasi-Maximum Likelihood Estimation (QMLE) technique. 
2. Log-likelihood value (VC) and Log-likelihood value (CC) refer to the likelihood values obtained from the VC-GARCH(1,1) and  
        CC-GARCH(1,1) models respectively. 
3. Correlations (CC) refer to the conditional correlation coefficient obtained from the CC-GARCH(1,1) model. 
4. LR is the likelihood ratio statistic for H0: π1 = π2 = 0 in the VC-GARCH(1,1) model. It is distributed as chi-squared with 2 degrees of freedom under H0. 
 
Table 4.  Estimation Results of Bivariate VC-APARCH(1,1) Model: ht

δ/2 = η + α(|εt-1| - γεt-1) δ + βhδ/2
t-1; Γt = (1 – π1 – π2)Γ + π1Γt-1 + π2Ψt-1 

Variable η β α γ δ  Γ π1 π2 LL (VC) Corr (CC) LL (CC) LR 
MYR/USD 0.0035 0.8010 0.1627 -0.1106 1.8861 0.3784 0.4815 0.1069 6338.1878 0.3585 6316.497 43.38208 

 (0.0019) (0.0470) (0.0358) (0.0656) (0.2646) (0.0263) (0.9150) (0.1008)  (0.0228)   
SGD/USD 0.0075 0.8619 0.1178 0.0176 1.3827        

 (0.0054) (0.0512) (0.0359) (0.0921) (0.3099)        
MYR/JPY 0.0287 0.9031 0.0713 -0.1943 1.1206 0.9408 0.8670 0.0356 2394.499072 0.9045 2237.167 314.663888 

 (0.0249) (0.0659) (0.0377) (0.1117) (0.2053) (0.0089) (0.0383) (0.0080)  (0.0065)   
SGD/JPY 0.0244 0.9123 0.0646 -0.2139 1.1065        

 (0.0163) (0.0425) (0.0235) (0.1132) (0.1713)        
Notes: 
1. All standard errors (in parenthesis) are the heteroskedastic-consistent Bollerslev-Wooldridge standard errors computed based on the Quasi-Maximum 

Likelihood Estimation (QMLE) technique. 
2. Log-likelihood value (VC) and Log-likelihood value (CC) refer to the likelihood values obtained from the VC-APARCH(1,1) and CC-APARCH(1,1) models 

respectively. 
3. Correlations (CC) refer to the conditional correlation coefficient obtained from the CC-APARCH(1,1) model. 
4. LR is the likelihood ratio statistic for H0: π1 = π2 = 0 in the VC-APARCH(1,1) model. It is distributed as chi-squared with 2 degrees of freedom under H0. 
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Table 5.  Estimation Results of VC-AGARCH(1,1) Model: ht = η + α(εt-1 - γ)2 + βht-1;  Γt = (1 – π1 – π2)Γ + π1Γt-1 + π2Ψt-1 
Variable η β α γ  Γ π1 π2 LL (VC) Corr (CC) LL (CC) LR 

MYR/USD 0.0030 0.7900 0.1670 -0.0136 0.3778 0.4186 0.1139 6329.32 0.3587 6307.53872 43.56184 
 (0.0013) (0.0459) (0.0355) (0.0236) (0.0258) (0.6992) (0.0734)  (0.0227)   

SGD/USD 0.0027 0.8638 0.0997 0.0225        
 (0.0015) (0.0535) (0.0367) (0.0306)        

MYR/JPY 0.0154 0.9132 0.0513 -0.1537 0.9400 0.8708 0.0354 2379.867 0.9041 2221.51303 316.70716 
 (0.0154) (0.0653) (0.0341) (0.0770) (0.0089) (0.0360) (0.0079)  (0.0070)   

SGD/JPY 0.0127 0.9199 0.0467 -0.1503        
 (0.0097) (0.0436) (0.0219) (0.0774)        

Notes: 
1. All standard errors (in parenthesis) are the heteroskedastic-consistent Bollerslev-Wooldridge standard errors computed based on the Quasi-Maximum 

Likelihood Estimation (QMLE) technique. 
2. Log-likelihood value (VC) and Log-likelihood value (CC) refer to the likelihood values obtained from the VC-AGARCH(1,1) and CC-AGARCH(1,1) models 

respectively. 
3. Correlations (CC) refer to the conditional correlation coefficient obtained from the CC-AGARCH(1,1) model. 
4. LR is the likelihood ratio statistic for H0: π1 = π2 = 0 in the VC-AGARCH(1,1) model. It is distributed as chi-squared with 2 degrees of freedom under H0. 
 
Table 6.  Estimation Results of Bivariate VC-FIGARCH(1,d,1) Model 

Variable η φ β D  Γ π1 π2 LL (VC) Corr (CC) LL (CC) LR 
MYR/USD 0.0026 0.3595 0.5467 0.4583 0.3920 0.0993 0.1482 6392.685 0.3694 6367.309 50.75224 

 (0.0012) (0.1215) (0.1090) (0.1481) (0.0257) (0.3147) (0.0409)  (0.0236)   
SGD/USD 0.0020 0.5869 0.7797 0.4428        

 (0.0010) (0.1357) (0.1093) (0.2290)        
MYR/JPY 0.0786 0.2130 0.3018 0.2153 0.9409 0.8659 0.0345 2394.589 0.9058 2243.902 301.3736 

 (0.0365) (0.2298) (0.2411) (0.0439) (0.0080) (0.0349) (0.0079)  (0.0063)   
SGD/JPY 0.0365 0.5094 0.6175 0.2369        

 (0.0143) (0.1093) (0.0993) (0.0574)        
Notes: 
1. All standard errors (in parenthesis) are the heteroskedastic-consistent Bollerslev-Wooldridge standard errors computed based on the Quasi-Maximum 

Likelihood Estimation (QMLE) technique. 
2. Log-likelihood value (VC) and Log-likelihood value (CC) refer to the likelihood values obtained from the VC-FIGARCH(1,d,1) and CC-FIGARCH(1,d,1) models 

respectively. 
3. Correlations (CC) refer to the conditional correlation coefficient obtained from the CC-FIGARCH(1,d,1) model. 
4. LR is the likelihood ratio statistic for H0: π1 = π2 = 0 in the VC-FIGARCH(1,d,1) model. It is distributed as chi-squared with 2 degrees of freedom under H0. 
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Table 7.  Estimation Results of Bivariate VC-FIAPARCH(1,d,1) Model 
Variable η φ γ δ β D  Γ π1 π2 LL (VC) Corr (CC) LL (CC) LR 
MYR/USD 0.0032 0.3598 -0.1400 1.9157 0.5401 0.4217 0.3856 0.0899 0.1441 6409.403 0.3644 6385.195 48.41536 
 (0.0023) (0.1167) (0.0636) (0.1685) (0.1080) (0.1332) (0.0254) (0.3452) (0.0406)  (0.0232)   
SGD/USD 0.0057 0.4877 -0.0610 1.5333 0.8088 0.5690        
 (0.0036) (0.1662) (0.0814) (0.1803) (0.1102) (0.2592)        
MYR/JPY 0.1427 0.2180 -0.1880 1.2189 0.3669 0.2675 0.9398 0.8570 0.0362 2419.755 0.9056 2270.288 298.9349 
 (0.0720) (0.2247) (0.1004) (0.1731) (0.2517) (0.0532) (0.0080) (0.0402) (0.0087)  (0.0063)   
SGD/JPY 0.0790 0.4527 -0.2304 1.1728 0.6241 0.3007        
 (0.0295) (0.0802) (0.1012) (0.1549) (0.1004) (0.0755)        
Notes: 
1. All standard errors (in parenthesis) are the heteroskedastic-consistent Bollerslev-Wooldridge standard errors computed based on the Quasi-Maximum 

Likelihood Estimation (QMLE) technique. 
2. Log-likelihood value (VC) and Log-likelihood value (CC) refer to the likelihood values obtained from the VC-FIAPARCH(1,d,1) and CC-FIAPARCH(1,d,1) 

models respectively. 
3. Correlations (CC) refer to the conditional correlation coefficient obtained from the CC-FIAPARCH(1,d,1) model. 
4. LR is the likelihood ratio statistic for H0: π1 = π2 = 0 in the VC-FIAPARCH(1,d,1) model. It is distributed as chi-squared with 2 degrees of freedom under H0. 
 
Table 8.  Estimation Results of Bivariate VC-FIAGARCH(1,d,1) Model 

Variable η φ γ β d  Γ π1 π2 LL (VC) Corr (CC) LL (CC) LR 
MYR/USD 0.0026 0.3532 -0.0138 0.5371 0.4497 0.3915 0.0973 0.1478 6393.943 0.3692 6368.837 50.21296 

 (0.0013) (0.1215) (0.0238) (0.1118) (0.1538) (0.0257) (0.3162) (0.0411)  (0.0236)   
SGD/USD 0.0019 0.5911 -0.0082 0.7848 0.4470        

 (0.0011) (0.1392) (0.0312) (0.1190) (0.2368)        
MYR/JPY 0.0793 0.1602 -0.1289 0.2481 0.1968 0.9394 0.8611 0.0351 2405.644 0.9053 2257.234 296.8197 

 (0.0316) (0.2027) (0.0703) (0.2070) (0.0387) (0.0081) (0.0388) (0.0084)  (0.0063)   
SGD/JPY 0.0321 0.5403 -0.1638 0.6275 0.2066        

 (0.0151) (0.1340) (0.0692) (0.1218) (0.0489)        
Notes: 
1. All standard errors (in parenthesis) are the heteroskedastic-consistent Bollerslev-Wooldridge standard errors computed based on the Quasi-Maximum 

Likelihood Estimation (QMLE) technique. 
2. Log-likelihood value (VC) and Log-likelihood value (CC) refer to the likelihood values obtained from the VC-FIAGARCH(1,d,1) and CC-FIAGARCH(1,d,1) 

models respectively. 
3. Correlations (CC) refer to the conditional correlation coefficient obtained from the CC-FIAGARCH(1,d,1) model. 
4. LR is the likelihood ratio statistic for H0: π1 = π2 = 0 in the VC-FIAGARCH(1,d,1) model. It is distributed as chi-squared with 2 degrees of freedom under H0. 
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Table 9.   Likelihood Ratio Test: Bivariate VC and VC-FI Models 
Variable VC-GARCH VC-FIGARCH LR VC-APARCH VC-FIAPARCH LR VC-AGARCH VC-FIAGARCH LR 

MYR/USD 6327.2524 6392.6850 139.9132 6338.1878 6409.4027 142.4298 6329.3196 6393.9434 129.2474
SGD/USD          
MYR/JPY 2372.3197 2394.5890 51.4773 2394.4991 2419.7554 50.5126 2379.8666 2405.6442 51.5552 
SGD/JPY          

Note: LR is the likelihood ratio test statistics 
  

 

Another noteworthy finding is that the magnitude of the time-variant component 

of the correlation equation { }ijρ=Γ  is much higher when the Japanese yen is the 

numeraire.  For example, the estimated correlations of the MYR/USD and SGD/USD 

(MYR/JPY and SGD/JPY) based on the VC-GARCH, VC-APARCH, VC-AGARCH, VC-

FIGARCH, VC-FIAPARCH and VC-FIAGARCH models are 0.3782 (0.9408), 0.3784 

(0.9408), 0.3778 (0.9400), 0.3920 (0.9409), 0.3856 (0.9398) and 0.3915 (0.9394); 

respectively.  This also applies to the corresponding estimates for the CC-GARCH, CC-

APARCH, CC-AGARCH, CC-FIGARCH, CC-FIAPARCH and CC-FIAGARCH models.  

They are: 0.3591 (0.9044), 0.3585 (0.9045), 0.3587 (0.9041), 0.3694 (0.9058), 0.3644 

(0.9056) and 0.3692 (0.9053), respectively.  Moreover, it can be seen that all estimates 

of the constant components of the conditional correlations are significant at the 5% level.  

However, for the same pair of exchange rates, the magnitude of correlation based on the 

time-varying correlation models is consistently higher than that under the constant 

correlation models.  This is consistent with the finding of Tse and Tsui (2002).  

Furthermore, the time-varying models are able to keep track of the time path of the 

conditional correlation between the two currencies across models.   

     

Finally, we perform residual diagnostics for all the models. Most of the Ljung-Box 

Q-statistics and McLeod-Li test statistics of the standardized residuals are insignificant at 

the 5% levels.  However, the BDS test statistics for the bivariate VC-APARCH model are 

still significant at the 5% level, suggesting that dependencies are still present for the 
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MYR/JPY and SGD/JPY series.  But the BDS tests are less significant for residuals of 

the same series in the VC-FIAPARCH model.  Apparently, the fractionally integrated 

model acts as a better variance filter than those without such a structure.  We also apply 

the diagnostic tests to the cross-product of the standardised residuals.  Under the null 

hypothesis of constant correlations, these residuals should be serially uncorrelated 

(Bollerslev (1990)).   Indeed, most of the Ljung-Box Q-statistics based on the cross 

product of the standardised residuals are insignificant at the 5% level, thereby 

suggesting the absence of serial correlation. This is corroborated by the BDS test 

results.   However, the time-varying models are preferred to the constant-correlation 

models as there is less evidence of serial correlation in the cross product of the 

standardised residuals. The complete test results are available from the authors upon 

request. 

 

Indeed, the relationship between currency hedging and exchange rate volatility 

has been extensively discussed by many researchers, such as Grammatikos and 

Saunders (1983), Kroner and Sultan (1993), Glen and Jorion (1993), Tong (1996), Jong, 

de Roon, and Veld (1997), Gagnon et al. (1998), Bos et al. (2000), Brooks and Chong 

(2001), and Bollen and Rasiel (2003).  In particular, Kroner and Sultan (1993) argue that 

neglecting time-varying volatility and the conditional distributions of the currency returns 

affects the performance of currency hedging strategies.  They estimate the risk-

minimizing futures hedge ratios for several currencies using a symmetric GARCH 

framework with constant correlations, and find evidence of greater risk reduction in the 

GARCH model than those of the conventional models.  Moreover, Bollen and Rasiel 

(2003) compare the option valuation model based on the GARCH framework with the 

standard “smile” model and note that the symmetric GARCH model outperforms the 

standard model in terms of hedging.  Consistent with previous findings, our results have 
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implications for currency hedging in three ways.  First, most of the previous research on 

currency hedging with GARCH-type models assumes that shocks to volatility do not 

have asymmetric effects. Since it is possible for currency volatility to be asymmetric 

under different numeraire currencies, a currency hedging model that does not 

incorporate asymmetries can potentially be biased.  Second, as the conditional 

correlation of exchange rate volatility can be significantly time-varying, the optimal hedge 

ratio will most likely require frequent updating. The assumption of conditional correlations 

in previous research is clearly inadequate.  Third, with the significant presence of high 

persistence in exchange rate volatility, a dynamic hedging strategy presuming that 

shocks to volatility subside in a relatively short period can underestimate the optimal 

hedge ratio over time. As noted by Baillie, Bollerslev and Mikkelsen (1996), “optimal 

hedging decisions must take into account any such long-run dependencies.” 

 

Regarding the implications for international portfolios, it is widely accepted that 

the issue of international diversification of portfolios cannot be separated from foreign 

exchange risk.  De Santis and Gerard (1997) test the conditional capital asset pricing 

model (CAPM) for the world’s eight largest equity markets by using a parsimonious 

GARCH parameterization.  They show that the expected gains from international 

diversification for a US investor average 2.11 percent per year and have not significantly 

declined over the last two decades.  However, their results are predicated on the 

assumption that the numeraire currency is the US dollar and investors do not cover their 

exposure to exchange rate volatility. Analyzing the case of incorporating exchange rate 

volatility in international portfolio diversification is beyond the scope of this paper, but our 

results may provide some preliminary evidence that the benefits of international 

diversification could be overstated if exchange rate volatility were ignored.    In addition, 

investors in mutual funds based on foreign firms need to determine the risks of their 
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foreign exchange. However, most empirical regularities of exchange rate volatility and 

correlation are derived from the US dollar exchange rates. Our findings indicate that 

such a reliance on the US dollar as the numeraire currency could be rather restricted as 

the volatility and correlation properties of foreign exchange are dependent on the choice 

of the numeraire currency. 

 

 

4. Concluding Remarks 
 
 We have followed up the study of Tse and Tsui (1997) to examine the empirical 

evidence of asymmetric volatility and long memory of the Malaysian ringgit and the 

Singapore dollar in the Asia-Pacific markets using a family of bivariate GARCH-type 

models. The proposed models can concurrently capture the stylized features of long-

range persistence, asymmetric conditional volatility and time-varying correlations 

associated with the exchange rate returns.  Besides the possible gains in efficiency in 

joint estimation of parameters, the bivariate approach is capable of tracking down the 

time path of conditional correlations between the two currencies.  

 

Consistent with previous studies by Hsieh (1993), Tse and Tsui (1997), and Tsui 

and Ho (2004), we find that in general the returns of the Malaysian ringgit and the 

Singapore dollar against the dollar do not exhibit asymmetric effects in their conditional 

volatilities.  In contrast, we detect strong evidence of negative asymmetric volatility when 

the Singapore dollar is measured against the yen.  This may imply an unbalanced 

degree of uncertainty induced by depreciation and appreciation of the Singapore dollar 

against the yen in the market.  In addition, we detect evidence of long-range temporal 

dependence in volatility in the two currencies, regardless of the choice of the numeraire 

currency. It seems that the impacts of exchange rate shocks display much longer 
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persistence than the standard exponential decay.  By comparing the log-likelihood 

values, we find that the bivariate fractionally integrated models generally outperform 

those models without the long-range dependent structures in the conditional variance.  

Moreover, we find significant evidence of time-varying conditional correlations in the two 

currencies against the yen.  In contrast, the evidence of time-varying correlations among 

the bilateral USD rates is much weaker.  The time-varying models help to map out 

interesting time paths of the correlation between the Malaysian ringgit and the Singapore 

dollar.  

 

Overall, this study has shown that the choice of numeraire currency (either the 

US dollar or the yen) for both the Singapore dollar and Malaysian ringgit can affect the 

significance of volatility asymmetry and time-varying correlations.  In addition, we have 

discussed the implications for currency hedging strategies and international investment 

portfolios.  Our findings may also be useful for empirical researchers in several areas, 

including the computation of VaR (Value at Risk) as a way to measure the risks of 

portfolios involving multiple currencies; the pricing of options based on the GARCH 

framework; the hedging of portfolios involving derivative securities; and the analysis of 

the impact of foreign exchange intervention on currency volatility.   

 

As noted by Tse and Tsui (1997), in their study of the Malaysian ringgit and the 

Singapore dollar against the US dollar, the ringgit exhibits asymmetric volatility whereas 

the Singapore dollar does not.  They argue that the outcome probably depends on the 

particular market microstructure of each currency.  They further suggest that, during the 

period of analysis, heterogeneous expectations and central bank intervention probably 

contribute to the significance of persistence and asymmetric effects in conditional 

volatility of the MYR/USD.  More recently, McKenzie (2002) also finds evidence of 
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volatility asymmetry in the Australian dollar against the US dollar, and suggests that this 

may have to do with foreign exchange intervention operations conducted by the central 

bank.  Moreover, Ramchander and Sant (2002) note that Fed intervention is associated 

with negative changes in the US dollar/Japanese yen volatility during the period from 

1985-1993.  An interesting topic for future research would be to investigate whether 

central bank intervention does consistently lead to significant asymmetries in the 

volatility of various currencies of developed and developing countries. 
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