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Stochastic Dominance and Mean-Variance Measures of Profit 

and Loss for Business Planning and Investment 

 

Abstract  

 

In this paper, we first extend the stochastic dominance (SD) theory by introducing 

the first three orders of both ascending SD (ASD) and descending SD (DSD) to decisions 

in business planning and investment to risk-averse and risk-loving decision makers so 

that they can compare both return and loss. We provide investors with more tools for 

empirical analysis, with which they can identify the first order ASD and DSD prospects 

and discern arbitrage opportunities that could increase his/her utility as well as wealth 

and set up a zero dollar portfolio to make huge profit. Our tools also enable investors and 

business planners to identify the third order ASD and DSD prospects and make better 

choices. 

 

To complement the stochastic dominance approach, we also introduce an 

improved mean-variance criterion to decisions in business planning or investment on 

both return and loss for risk-averse and risk-loving investors. We then illustrate the 

superiority of the present approaches with well-known examples in the literature and 

discuss the relationship between the improved stochastic dominance and mean-variance 

criteria.  

 

Keywords: Applied probability, Decision analysis, Risk analysis, Risk management, 

Uncertainty modelling 
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1. Introduction  

 

Since the development of the classical mean-variance (MV) context by Markowitz 

(1952) and Tobin (1958), the behavior towards risk of both risk averters and risk lovers 

have been widely studied by applying the MV approach which measures the risk 

exposure of financial assets and portfolios of financial assets. Another measure, 

stochastic dominance (SD), as partial orders defined over a set of risky payoffs, also 

provides useful criterion for portfolio choice and risk management. Originated from the 

majorization theory (Hardy et al, 1934; Marshall and Olkin, 1979), the stochastic 

dominance is formally developed by Quirk and Saposnik (1962), Hadar and Russell 

(1969), Hanoch and Levy (1969) and Rothschild and Stiglitz (1970). The SD approach 

has been regarded as one of the most useful tools to rank investment prospects when 

there are uncertainties (see, for example, Levy 1992) as the ranking of the assets has been 

proven to be equivalent to utility maximization for the preferences of risk averters and 

risk lovers (see, for example, Quirk and Saposnik, 1962; Hanoch and Levy, 1969; 

Hammond, 1974; Stoyan, 1983; Li and Wong, 1999). 

 

Since SD rules have been demonstrated to offer, in many cases, superior and more 

efficient criteria on which to base investment decisions than the criterion derived from 

the traditional model of asset choice based on MV methodology, the use of SD theory to 

compare profit or return for risk averters has been well established in both theory and 

application. Theoretical works linking the SD theory to the selection rules for risk 

averters and risk lovers under different restrictions on the utility functions has also been 

well investigated (for example, Quirk and Saposnik 1962 and Hammond 1974). To 

distinguish the SD theory for risk averters from that for risk lovers, in this paper, we call 

the former ascending stochastic dominance (ASD) and the latter descending stochastic 

dominance (DSD). The SD theory to compare profit or return for risk averters and risk 

lovers has also been widely applied in business and economics. For example, Hershey 

and Schoemaker (1980) investigate risk loving in the domain of losses, and Kuosmanen 
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(2004) derives some simple SD efficiency measures and test statistics to analyze 

industrial diversification of the market portfolio.  

 

The concept of SD and utility function theory has also been used to compare risk 

profiles or loss of various investments. Hershey and Schoemaker (1980) present an 

experimental investigation of risk taking and show that the results are partially 

compatible with expected utility analysis. Fennema and van Assen (1998) introduce a 

measure of the utility of losses by means of the tradeoff method. Post and Diltz (1986), 

Weeks and Wingler (1979) and Weeks (WKS, 1985) discuss the behaviour of the risk-

averse decision maker when the potential loss of a project is used as the variable of 

interest. Dillinger et al. (DSM, 1992) identify the mistakes in Post and Diltz (1986), 

Weeks, and Wingler (1979) and WKS with corrected modification by introducing the 

Variability Ordering, which is a dual problem of the second order ASD in our paper. 

 

Working along similar lines as Whitmore (1970) who extends the second order SD 

developed by Quirk and Saposnik (1962) and others to the third order SD for risk 

averters, in this paper we first extend the works of Hershey and Schoemaker (1980), Post 

and Diltz (1986), Weeks and Wingler (1979), WKS and DSM by introducing the first 

three orders ASD to study the behavior of risk averters on the potential loss as well as the 

profit of a project. As risk-loving behaviour is an important issue (see, for example, 

Hammond, 1974; Hershey and Schoemaker, 1980; Stoyan, 1983; Myagkov and Plott, 

1997; Anderson, 2004; Post and Levy, 2005), we then extend the works of WKS and 

DSM and others by introducing the first three orders of DSD to decisions in business 

planning and investment for risk-averse as well as risk-loving decision makers to 

compare both return and loss. Our approaches take into consideration the entire 

distributions of the loss and profit of different business opportunities and compares both 

the downside risk and upside profit opportunities. Though the theory can be easily 

extended to any order, in this paper we focus our discussion on the first three as the first 

three orders SD are of most importance in theory as well as in empirical application. The 

first order SD is very important as it gives rise to arbitrage opportunities (Bawa, 1978; 

Jarrow, 1986). The second order SD is prominent in SD literature as it can be used by 
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risk averters and risk lovers to choose among different investment opportunities. On the 

other hand, many academics demonstrate the usefulness of the third order SD, see for 

example, Whitmore (1970), Whitmore and Findley (1978), Shorrocks and Foster (1987), 

Wong and Li (1999), Gotoh and Konno (2000), Ng (2000) and Anderson (2004).  

 

As a complement of the SD theory, there are the MV or mean-standard deviation 

(MS) preferences of the decision-maker to the variable of profit derived from a von 

Neumann-Morgenstern (von Neumann and Morgenstern, NM, 1944) quadratic utility 

function and from a family of normal distributions.  They are often used in economics 

and business, especially after Markowitz (1952) and Tobin (1958) propose the MV 

selection rules for risk-averters. For example, Konno and Yamazaki (1991) apply the MV 

preference to optimize the stock portfolio with illustrations from the Tokyo Stock Market 

while McNamara (1998) and Gasbarro et al. (2006) apply both MV and SD to exploit the 

association of returns on risky assets. On the other hand, WKS apply the theory of the 

MV criterion to the variable of loss. In this paper, we extend the work of Markowitz, 

Tobin and WKS by introducing the improved MV criterion on both the variable of profit 

and the variable of loss to decision making in business planning and investment for risk-

averse and risk-loving investors.  

 

The new SD and MV theoretically-driven methodologies developed in our paper 

enables business planners and investors to analyse many complex contemporary decision 

problems that could occur in various forms including inter-organizational, group-based, 

and technology-enabled. We examine the possibilities for the practical implementation 

used by the financial decision maker and emphasize the impact of the application made 

by the theories developed in our paper. To do that, in this paper we illustrate the 

superiority of our approaches to the analysis of both SD and MV with the examples used 

in WKS, DSM and Levy and Levy (2002). In our illustration, the methodologies 

developed in our paper can identify the first order ASD and DSD prospects and discern 

arbitrage opportunities that could increase one’s utility as well as wealth and set up a zero 

dollar portfolio to make huge profit. Our tools also enable investors and business planners 
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to identify the third order ASD and DSD prospects and make better choices. We further 

explore the relationship between SD and MV with illustrations.  

 

 

2. Definitions and Notations  

 

Let R  be the set of extended real numbers and [ , ]a bΩ =  be a subset of R  in 

which a and b can be finite or infinite. Let B be the Borel σ-field of Ω  and μ  be a 

measure on (Ω ,B). The functions F and FD of the measure μ  are defined as: 

          F (x) = µ [a, x] and   FD (x) = µ [x, b] for all x ∈ Ω  .                   (1)    

The function F is called a probability distribution function or cumulative distribution 

function (CDF) and μ  is called a probability measure if ( ) 1μ Ω = . By the basic 

probability theory (Ash, 1972), for any random variable X and for any probability 

measure P, there exist a unique induced probability measure μ  on ( Ω , B) and a 

probability distribution function F which satisfies (1) and 

µ(B) = P(X-1(B)) = P(X ∈ B)     for any    B ∈ B. 

An integral written in the form of )()( tdtf
A
∫ μ  or )()( tdFtf

A
∫  is a Lebesgue integral 

for any integrable function )(tf . For any [ , ]A c d= ⊆ Ω , we will write the integral as 

( )
d

c

f t dt∫ . We note that as Lebesgue integral measures any integration of any continuous 

random variable as well as any summation of any discrete random variable, in this paper 

we will use ( )
d

c

f t dt∫  to present an integration of any continuous random variable from c 

to d as well as any summation of any discrete random variable from c to d for any 

[ , ]c d ⊆ Ω . 

 

Variables denoted by X, Y, ··· defined on Ω are considered random variables. The 

cumulative distribution functions of X and Y are F and G respectively and let f and g be 
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the corresponding probability density functions (PDFs) of two prospects, X and Y, 

respectively, with common support of Ω = [a, b], where a < b, then the following 

notations will be used throughout this paper: 

∫===
b

aXF xxdFXE )()(μμ ,   ∫===
b

aYG xxdGYE )()(μμ  , 

0 0
A DM M m= = , ( ) ( )1

xA A
j ja

M x M t dt−= ∫  and ( ) ( )1

bD D
j jx

M x M t dt−= ∫   (2) 

for m = f , g ; ,M F G= ; and 1, 2,3j = . The definition of the first, second and third order 

ascending stochastic dominances (ASD) applied to risk averters is then defined as follows:  

 

Definition 1: Given two random variables X and Y with F and G as their respective 

cumulative distribution functions defined on [a, b], X is at least as large as Y and F is at 

least as large as G in the sense of: 

a. FASD, denoted by YX 1f or GF 1f , if and only if )x(G)x(F AA
11 ≤  for all x in [a, 

b], 

b. SASD, denoted by YX 2f or GF 2f , if and only if )x(G)x(F AA
22 ≤  for all x in [a, 

b], and 

c. TASD, denoted by YX 3f or GF 3f , if and only if )x(G)x(F AA
33 ≤  for all x in [a, 

b] and GF μμ ≥ , 

where FASD, SASD and TASD stand for the first, second and third order 

ascending stochastic dominances  respectively, and Fμ  and Gμ  are the means of 

X  and Y  respectively. 

If, in addition, there exists x in [a, b] such that )x(G)x(F A
i

A
i <  for i = 1, 2 and 3, we 

say that X is larger than Y and F is larger than G in the sense of SFASD, SSASD and 

STASD, denoted by YX 1f  or GF 1f , YX 2f  or GF 2f  and YX 3f  or GF 3f  

respectively, where SFASD, SSASD, and STASD stand for strictly first, second and third 

order ascending stochastic dominances respectively. 

 

The definition of the first, second and third order descending stochastic dominances 

(DSD) applied to risk lovers is defined as follows: 
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Definition 2 : Given two random variables X and Y with F and G as their respective 

cumulative distribution functions defined on [a, b], X is at least as large as Y and F is at 

least as large as G in the sense of: 

a. FDSD, denoted by YX 1
f or GF 1

f , if and only if )()( 11 xGxF DD ≥  for all x in [a, 

b], 

b. SDSD, denoted by YX 2
f or GF 2

f , if and only if )()( 22 xGxF DD ≥  for all x in [a, 

b], and  

c. TDSD, denoted by YX 3
f or GF 3

f , if and only if )()( 33 xGxF DD ≥  for all x in [a, 

b] and GF μμ ≥ , 

where FDSD, SDSD and TDSD stand for the first, second and third order 

descending stochastic dominances  respectively, and Fμ  and Gμ  are the means of 

X  and Y  respectively. 

 

If, in addition, there exists x in [a, b] such that )x(G)x(F D
i

D
i >  for i = 1, 2 and 3, we 

say that X is larger than Y and F is larger than G in the sense of SFASD, SSASD and 

STASD, denoted by YX 1f  or GF 1f , YX 2f  or GF 2f  and YX 3f  or GF 3f  

respectively, where SFDSD, SSDSD, and STDSD stand for strictly first, second and third 

order descending stochastic dominances respectively. 

 

We call the integrals A
nM  defined in (2) to be FASD, SASD and TASD integrals and 

D
nM   defined in (2) to be FDSD, SDSD and TDSD integrals respectively for n = 1, 2 and 

3 and for M = F and G.  Let X be the variable of return or profit with the cumulative 

distribution function F and u be the utility function associating with profit. Following 

WKS and DSM, we define the variable of loss X*  with the corresponding cumulative 

distribution function F*  and the utility function u*  associating with loss in the following 

definition: 
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Definition 3: Suppose that X is the variable of return or profit with the cumulative 

distribution function F defined on [a, b], the variable of loss X* with the corresponding 

cumulative distribution function F*  defined on [-b, -a] is: 

X* = X−   .                                                              (3) 

Suppose u is the utility-for-profit function associating with the variable of profit and u* is 

the corresponding utility-of-loss function associating with the variable of loss, then 

u* (X*) = u (X)  .                                                        (4) 

 

We note that the variable of loss X* in (3) can also be defined as  

       X* = TC X−                                                              (5) 

where TC is the total cost (assumed to be fixed) and X is the profit. However, both 

definitions of (3) and (5) will draw the same conclusions based on both SD and MV 

criteria. This argument can be proven by modifying the proofs in Theorems 4 in Hadar 

and Russell (1971) and Theorem 1’ in Tesfatsion (1976). In this connection, we will use 

(3) as well as (5) in the entire paper.   

 

We note that Definitions 1 and 2 can be used to compare both profit and loss in a 

way that both X and Y can be the variable of profit or the variable of loss.  Since we 

denote X* (Y*) as the variable of loss with the corresponding cumulative distribution 

function F* (G*), we refine ASD and DSD for the variable of loss as follows: 

 

Definition 4: Given two random variables of loss X*  and  Y*  with F*  and  G* as their 

respective cumulative distribution functions defined on [-b, -a],  X*  is at least as large as  

Y*   and  F*  is at least as large as  G*  in the sense of: 

a. FASD, denoted by ** 1YX f  or ** 1GF f , if and only if *)(**)(* 11 xGxF AA ≤  

for all x in [-b, -a], 

b. SASD, denoted by ** 2YX f  or ** 2GF f , if and only if *)(**)(* 22 xGxF AA ≤  

for all x in [-b, -a], and 

c. TASD, denoted by ** 3YX f  or ** 3GF f ,  if and only if *)(**)(* 33 xGxF AA ≤  

for all *x  in [-b, -a] and ** GF μμ ≥ , 
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where *Fμ  and *Gμ  are the means of  X*  and  Y*  respectively. 

 

Definition 5: Given two random variables of loss X*  and  Y*  with F*  and  G*  as their 

respective cumulative distribution functions defined on [-b, -a],  X*  is at least as large as  

Y*   and  F*  is at least as large as  G*  in the sense of: 

a. FDSD, denoted by ** 1YX f  or ** 1GF f ,  if and only if *)(**)(* 11 xGxF DD ≥  

for all *x  in  [-b, -a], 

b. SDSD, denoted by ** 2YX f  or ** 2GF f ,   if and only if *)(**)(* 22 xGxF DD ≥  

for all *x  in  [-b, -a], and 

c. TDSD, denoted by ** 3YX f  or ** 3GF f ,   if and only if *)(**)(* 33 xGxF DD ≥  

for all *x  in  [-b, -a]  and ** GF μμ ≥ , 

where *Fμ  and *Gμ  are the means of  X*  and  Y*  respectively. 

 

The definitions of the strictly ASD and DSD for the variables of loss can be defined 

similarly. In the basic theorems in SD theory, the ASD and DSD are used to compare 

profits by matching certain utility functions with the variable of profit or return as shown 

in the following definition:  

 

Definition 6:    Let u be utility-for-profit function. For n = 1, 2, 3, A
nU , SA

nU , D
nU  and 

SD
nU  are sets of utility-for-profit functions such that: 

},,1,0)()1(:{)( )(1 niuuUU iiSA
n

A
n L=>≥−= +

,  

},,1,0)(:{)( )( niuuUU iSD
n

D
n L=>≥= . 

where ( )iu  is the thi derivative of the utility function u. 

 

Note that the theory can be easily extended to satisfy utilities defined in Definition 6 to be 

non-differentiable. For simplicity, we skip the discussion of non-differentiable utilities in 

this paper. Let u*   be utility-of-loss function. The classes of utility-of-loss functions 

corresponding to the variables of loss are defined as follows:  
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Definition 7:  For n = 1, 2, 3, A
nU * , SA

nU * , D
nU * and SD

nU *   are sets of utility-of-loss 

functions such that: 
A

nU * ( SA
nU * ) = {u* : u* (X*) = u (X),  u ∈  A

nU ( SA
nU )} ;  and 

D
nU * ( SD

nU * ) = {u* : u* (X*) = u (X),  u ∈  D
nU ( SD

nU )} ;  

where X* is defined in (3) and u* is defined in (4). 

 

Weeks and Wingler (1979) find that the utility-of-loss function is the mirror image 

(around the vertical axis) of the same investor’s utility-for-profit function. Hence, we 

define the set of utility-of-loss functions for the same investors whose utility-for-profit 

functions belong to A
nU  as A

nU * . Similarly, other sets of utility-of-loss functions are 

defined in the same way. Note that in Definition 6 ‘increasing’ means ‘non-decreasing’ 

and ‘decreasing’ means ‘non-increasing’. We also remark in Definition 6 that DA UU 11 ≡  

and SDSA UU 11 ≡ . An individual chooses between F and G in accordance with a consistent 

set of preferences satisfying the NM consistency properties. Accordingly, F is (strictly) 

preferred to G, or equivalently, X is (strictly) preferred to Y , if 

( ) ( ) 0( 0)u u F u GΔ = − ≥ >  and * *( *) * ( *) 0( 0)u u F u GΔ = − ≥ >   (6) 

where ( ) [ ( )]u F E u X= , ( ) [ ( )]u G E u Y= , * ( *) [ * ( *)]u F E u X= , * ( *) [ * ( *)]u G E u Y= . 

                   

The above definitions enable business planners or investors to use the entire 

distributions of the variables of loss and the variables of profit to compare different 

investment opportunities. To examine the downside risk of different orders, business 

planners could apply the ASD approach of the corresponding orders to the variables of 

profit (see Definition 1) or apply DSD of the corresponding orders to the variables of loss 

(see Definition 5).  Our approaches also enable investors to take into consideration the 

upside profit of different orders in their decisions by applying DSD to the variables of 

profit of the corresponding orders (see Definition 2) and applying ASD to the variables of 

loss of the corresponding orders (see Definition 4). In addition, our approaches also make 

it possible for decision makers to review the effects of both downside risk and upside 

profit of different orders at the same time before making decisions about their 

investments, be they risk-averse or risk-loving decision makers. 
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3. Stochastic Dominance Criterion for Decision-Making in Business Planning 

 

DSM introduce the concept of Stochastically More Variable (SMV) to study the 

variables of loss as well as return and suggest that a risk-averse decision maker will 

follow the ordering of random variables given by SASD while a risk-loving decision 

maker will follow the variability ordering instead. We note that DSM call SASD Second 

Order Stochastic Dominance (SSD) and the concept of SMV introduced by DSM is a 

dual problem of SASD and it is the same concept as SDSD in Definition 2. In order to 

distinguish loss from profit, in this paper we define clearly the variables of profit and 

variables of loss and their correspondence utility functions. In addition, to extend the 

theory introduced by WKS and DSM to the first three orders and to include both utility-

for-profit and utility-of-loss functions, we employ the theory of both ASD and DSD so 

that risk-averse and risk-loving decision makers can make decisions in business planning 

and investment prospects.  

 

Weeks and Wingler (1979) claim that the utility-of-loss functions are mirror images 

(around the vertical axis) of the same investor’s utility-for-profit functions. In addition, it 

is easy to prove that (1) *u  is a decreasing function since u  is an increasing function, (2) 
*u  is convex (concave) if and only if u  is concave (convex), (3) the third derivative of 
*u  is of different sign from that of u , and (4) DA UU 11 =  is the set of increasing functions 

of the utilities for profit while DA UU *
1

*
1 =  is the set of decreasing functions of the utilities 

of loss. The following theorem1 and corollary provide the linkage between X and *X  in 

the SD theory: 

 

Theorem 1 :   For random variables X  and Y , we have the following: 

a. YX ii )(ff  if and only if ** )( XY ii
ff  for i =1, 2 or 3. 

b. YX )( 11 ff  if and only if YX )( 11
ff . 

                                                
1 We skip reporting the proofs of all the theorems in the paper for simplicity. They are available on request. 
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c. If X  and Y  have the same finite mean, then 

YX )( 22 ff  if and only if XY )( 22
ff . 

 

Corollary  2:      For random variables of profit, X  and Y  , we have the following: 

a. ** )( YX ii ff  if and only if XY ii )(ff  for i =1, 2 or 3. 

b. *
11

* )( YX ff  if and only if *11* )( YX ff . 

c. If X  and Y  have the same finite mean, then 
*

22
* )( YX ff  if and only if *22* )( XY ff . 

where *X  and *Y  are the variables of loss defined in (3).  

 

The following theorem states the relationship between the SD preferences and the utility 

preferences for risk averters and risk lovers with respect to the utility functions of profit: 

 

Theorem 3:  Let X  and Y  be random variables of profit with cumulative distribution 

functions F  and G  respectively. Suppose u  is a utility-for-profit function, for m  = 1, 2 

and 3, we have the following: 

a. GF mm )(ff  if and only if )()()( GuFu >≥  for any u  in ( )A SA
m mU U ; and  

b. GF mm )(ff  if and only if )()()( GuFu >≥  for any u  in ( )D SD
m mU U ; 

where )(Fu  and  )(Gu  are defined in (6). 

 

The following theorem states the relationship between the SD preferences and the 

utility preferences for risk averters and risk lovers with respect to the utility functions of 

loss: 

 

Theorem 4: Let *X  and *Y  be random variables of loss with cumulative distribution 

functions *F  and *G , and  *u  be a utility-of-loss function satisfying (4). For m  = 1, 2 

and 3, we have the following: 

a. ** )( GF mm ff  if and only if )()()( **** FuGu >≥  for any *u  in * *( )D SD
m mU U ; and 

b. ** )( GF mm
ff  if and only if )()()( **** FuGu >≥  for any *u  in * *( )A SA

m mU U ; 
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where )( ** Fu and )( ** Gu  are defined in (6). 

 

Theorems 3 and 4 show that the different classes of utility functions match the 

corresponding classes of stochastic dominance totally. These results are crucial in the 

stochastic dominance theory as SD can then be used for utility maximization which in 

turn provides tools for business planners, including risk-averse and risk-loving planners, 

to make their decisions in business planning and investment. For convenience, we call a 

person a first-order-ascending-stochastic-dominance (FASD) investor if his/her utility-

for-profit function u  belongs to 1
AU  or if his/her utility-of-loss function belongs to *

1
AU ; 

a first-order-descending-stochastic-dominance (FDSD) investor if his/her utility-for-

profit function u  belongs to 1
DU or if his/her utility-of-loss function belongs to *

1
DU ; and a 

second-order-ascending-stochastic-dominance (SASD) risk investor if his/her utility-for-

profit function u  belongs to 2
AU  or if his/her utility-of-loss function belongs to *

2
AU . A 

second-order-descending-stochastic-dominance (SDSD) risk investor, a third-order-

ascending-stochastic-dominance (TASD) risk investor and a third-order-descending-

stochastic-dominance (TDSD) risk lover investor can be defined in the same way. Since 

FASD and FDSD are equivalent (see Part b of Theorem 1), we will call the FASD and 

FDSD investors FSD investors. For simplicity, from now on we will use A
nU ( *A

nU ) to 

stand for both A
nU ( *A

nU )  and SA
nU ( *SA

nU  ) and use D
nU  ( *D

nU ) to stand for both D
nU  

( *D
nU )  and SD

nU ( *SD
nU  ).  In the next section, we will discuss our extension of the MV 

criterion to both variables of profit and variables of loss as a complement to the SD 

approach, and then illustrate the superiority of our approaches in the illustration section. 

 

 

4. Mean-Variance Criterion for Decision-Making in Business Planning 
 

Applying the MV criterion to the variables of profit has been well established in the 

literature. WKS first applies the MV criterion to the variables of loss. In this paper, we 

extend the work further by improving the MV criterion so that it can be applied to the 
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variables of profit as well as the variables of loss and can be used by any risk-averse and 

risk-loving investors to make decisions in business planning and investment. For any two 

prospects with the variables of profit or return iY  and jY  with means iμ  and jμ  and 

standard deviations iσ  and jσ  respectively, it is well-known that jY  is said to dominate 

iY  by the MS rule if jμ ≥ iμ  and jσ ≤ iσ  (Markowitz, 1952; Tobin, 1958). This rule is 

standard in the literature for risk-averse investors. In this paper, we improve the MV 

criterion by introducing the ascending and descending MV rule to cover both risk 

averters and risk lovers as shown in the following two definitions: 

 

Definition 8: Given two random variables of profit X  and Y  with means xμ  and yμ  

and standard deviations xσ  and yσ  respectively, then 

a. X  is said to dominate Y (strictly) by the Ascending MS (AMS)  rule, denoted by 

X  AMS  Y  if ( )x yμ μ≥ >  and ( )x yσ σ≤ < ; and  

b. X  is said to dominate Y (strictly) by the Descending MS (DMS) rule, denoted by 

X  DMS  Y  if ( )x yμ μ≥ >  and ( )x yσ σ≥ > . 

 

Definition 9: Given two random variables of loss *X  and *Y with means *
xμ  and *

yμ  

and standard deviations *
xσ  and *

yσ  respectively, then 

a. *X is said to dominate *Y (strictly) by the AMS rule, denoted by *X  *
AMS  *Y if 

* *( )x yμ μ≤ <  and * *( )x yσ σ≤ < ; and 

b. *X is said to dominate *Y (strictly)  by the DMS rule, denoted by *X *
DMS  *Y if 

* *( )x yμ μ≤ < and * *( )x yσ σ≥ > . 

 

It is well-known that SASD is equivalent to MV efficiency when the variables are 

normally distributed (Markowitz, 1952; Tobin, 1958). Meyer (1987) extends the theory to 

include variables that differ only by location-scale parameters. We extend the efficiency 

further to cover a location-scale family and a combination of location-scale families. 

Based on Markowitz’s and Meyer’s findings, we then develop the linkage of the MS 
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rules to the utility maximization for both the variable of profit and the variable of loss, 

and relate it to the risk-averse and risk-loving investors in the following two theorems: 

 

Theorem 5:   Let X  and Y  be random variables of profit with means xμ  and yμ  and 

standard deviations xσ  and yσ  respectively. 

a. If X  AMS  Y (strictly) and if both X  and Y  belong to the same location-scale 

family or the same linear combination of location-scale families, then 

[ ( )] ( ) [ ( )]E u X E u Y≥ >   for the risk-averse investor with the utility-for-profit 

function u   in 2 2( )A SAU U ; and 

b. if X  DMS  Y (strictly)  and if both X  and Y  belong to the same location-scale 

family or the same linear combination of location-scale families, then 

[ ( )] ( ) [ ( )]E u X E u Y≥ >  for the risk-loving investor with the utility-for-profit 

function u  in 2 2( )D SDU U . 

 

Theorem 6:  Let *X  and *Y be random variables of loss with means *
xμ  and *

yμ  and 

standard deviations *
xσ  and *

yσ  respectively. 

a. If *X  *
AMS  *Y  (strictly) and if both *X  and *Y belong to the same location-scale 

family or the same linear combination of location-scale families, then 
* * * *[ ( )] ( ) [ ( )]E u X E u Y≥ >  for the risk-averse investor with the utility-of-loss 

function  *u  in * *
2 2( )A SAU U ; and 

b. if *X  *
DMS  *Y (strictly) and if both *X  and *Y belong to the same location-scale 

family or the same linear combination of location-scale families, then 
* * * *[ ( )] ( ) [ ( )]E u X E u Y≥ >  for the risk-loving investor with the utility-of-loss 

function  *u  in * *
2 2( )D SDU U . 

 

The above theorems will be useful in applying the improved MV criterion in the 

comparison of profit and loss. In addition, by incorporating the above two theorems into 
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Theorems 3 and 4, we provide linkage between the SD and MV rules. The application of 

these theorems will be illustrated in the next section.  

 

5. Illustration 

 

We adopt the examples used in WKS, DSM and Levy and Levy (2002) to illustrate 

the superiority of our approach. We first use the Production/Operations Management 

(POM) example demonstrated by WKS and DSM. A production/operations system needs 

extra capacity to satisfy the expected increased demand. Three mutually exclusive 

alternative sites have been identified and the cost  ( *X ) with their associated 

probabilities *f , *g and *h  have been estimated as shown in Table 1. The varying costs 

and accompanying probabilities reflect uncertainties in labor costs, shipping costs, 

construction costs, or other costs associated with the location alternatives. Table 1 also 

depicts the ASD integrals of the first three orders for each location. 

 

Place Table 1 here 

 

In the POM example, we extend the findings from WKS and DSM in the POM 

example for FASD, SASD, TASD risk averters as well as FDSD, SDSD, TDSD risk 

lovers to both variables of profit and variables of loss in detail. The example shows the 

risk profiles for three locations for a plant in terms of costs, see Table 1. The variable X 

can be defined as the variable of profit or return or as the variable of loss or cost. 

However, to avoid possible confusion, in this paper we use X* to represent the variable of 

loss or cost and X to represent the variable of profit or return as defined in (3) or (5). In 

Tables 1 to 4, x* represents different levels of costs with probabilities  f*, g* and h* and 

their corresponding CDFs F*, G* and H* for the three different locations. The ASD and 

DSD integrals A
nM *  and D

nM *  defined in (2) for  n = 1, 2 and 3 and M = F, G and H and 

the estimates of the ASD integrals are presented in Table 1 while the estimates of the 

DSD integrals for the three locations are depicted in Table 2. 

 

Place Table 2 here 
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 Tables 3 and 4 show the differences of the ASD integrals and the DSD integrals for 

each pair of the three locations of the first three orders. To simplify the notations in 

Tables 3 and 4, we let the ASD Integral Differential A
nPQ*  and DSD Integral Differential 

D
nPQ*  be 

A
nPQ*   = A

nP* A
nQ*−  and D

nPQ*  = D
nP* D

nQ*−     (7) 

respectively, for   n = 1, 2 and 3 and for P, Q = F,G or H.  

 

Place Tables 3 and 4 here 

 

From Table 3, we find that neither F*, G* nor H* dominates one another in the sense 

of FASD. However, from the table we find that *** HGF nn ff  for n = 2 and 3. From 

Theorem 4, we conclude that H* is preferred to G* which in turn is preferred to F* by the 

SDSD or TDSD risk lover. Similarly, from Table 4, we find that neither  F*, G* nor H* 

dominates one another in the sense of FDSD. Table 4 also shows that F* does not 

dominate G* nor H* in the sense of SDSD but ** GH 2f  which implies that G* is 

preferred to H* by the SASD risk averter. Moreover, from the table, we find that 
*** FGH 33 ff . Hence F* is preferred to G* which in turn is preferred to H* by the 

TASD risk averter. This conclusion is different from DSM’s as we draw inference to 

cover bigger classes of investors.  

 

In addition, using the improved MV criterion, from Table 1, we have *G *
AMS  *H , 

and *H *
DMS  *G *

DMS  *F . This means that G* dominates H* by the AMS rule while H* 

dominates G* which in turn dominates F* by the DMS rule. From Theorem 6, we 

conclude that if G* and H* belong to the same location-scale family, then G* is preferred 

to H*  by the SASD risk averter. Similarly, if H*, G* and F* belong to the same location-

scale family, then H* is preferred to G* which in turn is preferred to F*  by the SDSD risk 

lover. Similarly, our conclusions are different from both WKS’ and DSM’s as we draw 

inference to cover bigger classes of investors.  
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As we discuss in our previous sections, it is difficult to use the SD or MV theory for 

the variable of profit to draw a conclusion for the variable of loss with respect to the 

utility function for loss. If one does not want to compare the variable of loss, we 

recommend converting the variable of loss to the variable of profit and apply the SD or 

MV theory for the variable of profit. We assume the revenue, say M, is constant, then the 

variable of profit, X, will be equal to M –X*  as defined in (5). As the value of the constant 

M does not affect the results, we can set M to be any value, e.g. zero, so that X = - X*, as 

defined in (3). However, in this example, we use the definition in (5) and conveniently set 

M = 6 so that the value of X will be from 1 to 5 while the value of  X*  from 5 to 1. The 

profits for different locations and their ASD integrals are shown in the following table:   

 

Place Table 5 here 

 

In Tables 5 to 7, x represents different levels of profit with probabilities  f, g and h 

and their corresponding ASD and DSD integrals A
nM  and D

nM  defined in (2) for n = 1,2 

and 3 and M = F, G and H  for different locations. Similarly, for the definition in (7), we 

let the ASD and DSD Integral Differentials A
nPQ  = A

nP A
nQ−   and D

nPQ  = D
nP D

nQ−   for 

n = 1, 2 and 3 and P, Q = F, G and H for n = 1, 2 and 3 and P, Q = F, G and H  . 

 

Place Tables 6 and 7 here 

 

From Table 6, we find that neither F, G nor H dominates one another in the sense of 

FASD. However, Table 6 shows that G dominates H in the sense of SASD and, hence, G 

is preferred to H by the SASD risk averter. Table 6 also shows that HGF 33 ff  and, 

hence, F is preferred to G which in turn is preferred to H by the TASD risk averter.  From 

Table 7, we find that neither F, G nor H dominates one another in the sense of FDSD. 

However, Table 7 shows that FGH 22 ff . Hence, H is preferred to G which in turn is 

preferred to F by the SDSD risk lover. Moreover, the table also shows that 

FGH 33 ff which implies that H is preferred to G which in turn is preferred to F by the 

TDSD risk lover.  
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In addition, applying the improved MV criterion, from Table 5, we have G AMS  H, 

and H DMS  G DMS  F. This means that G dominates H  by the AMS rule while H 

dominates G which dominates F  by the DMS rule. From Theorem 5, we conclude that if 

G and H belong to the same location-scale family, then G is preferred to H by the SASD 

risk averter. Similarly, if H, G and F belong to the same location-scale family, then H is 

preferred to G which in turn is preferred to F by the SDSD risk lover.  

 

We summarize our findings from Tables 1 to 7 as follows: 

 

A. Using the improved Mean-Variance criterion: 

 

MV1 *G *
AMS  *H .   That is, *G  dominates *H  by AMS rule. If both *G  and *H  

belong to the same location-scale family, then *G  is preferable to *H  for the 

SASD risk averter.  

MV1’ G AMS  H.  That is, G dominates H  by AMS rule. If both G and H  belong to 

the same location-scale family, then G is preferable to H for the SASD risk 

averter. 

MV2 There are no preference between *G  [or *H ] and *F in the sense of *
AMS . 

MV2’ There are no preference between G [or H] and F in the sense of AMS . 

MV3 *H *
DMS  *G *

DMS  *F . That is, *H dominates *G  which in turn dominates 
*F by the DMS rule.  If H*, G* and *F  belong to the same location-scale 

family, then *H is preferable to *G  which is preferable to *F  for the SDSD 

risk lover. 

MV3’ H DMS  G DMS  F. That is, H dominates G which in turn dominates F  by the 

DMS rule.  If H , G and F belong to the same location-scale family, then H is 

preferable to G  which is preferable to F  for the SDSD risk lover. 
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B.     Using the improved Stochastic Dominance criterion: 

 

SD1  FSD investors have no preference among  *F , *G  and *H ; 

SD1’ FSD investors have no preference among F, G and H; 

SD2 SASD risk averters have no preference between  *F and *G , no preference 

between *F and *H  but prefer  *G to *H ; 

SD2’ SASD risk averters have no preference between F and G, no preference 

between F and H, but prefer G to H ; 

SD3 TASD risk averters prefer *F to *G to *H ;  

SD3’ TASD risk averters prefer F to G to H;  

SD4 SDSD and TDSD risk lovers prefer *H  to *G  to *F ; and 

SD4’ SDSD and TDSD risk lovers prefer H to G to F. 

 

From the above summary, it is easy to notice the superiority of our approaches to 

WKS’ and DSM’s as our approaches cover wider classes of investors not only including 

FASD and SASD risk averters as used in WKS and DSM, but also TSAD risk averters as 

well as FDSD, SDSD and TDSD risk lovers.  Our approaches provide investors with 

more tools for empirical analysis, with which they can identify the first order ASD and 

DSD prospects and discern arbitrage opportunities that could increase his/her utility as 

well as wealth and set up a zero dollar portfolio to make huge profit. Our tools also could 

be used to identify the second and third orders ASD and DSD prospects which, in turn, 

enable investors to make better choices.  

  

The above example show the superiority of using our approaches in business 

planning, we further illustrate the superiority of our approaches in investment by using 

two of the most complicated experiments in Levy and Levy (2002) - the gains one month 

later for an investor who invests $10,000 either in stock A or in stock B. The two 

experiments are shown below.   

 

Place Experiments 1 and 2 here 
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We choose these two experiments from Levy and Levy because (1) these two are the 

most complicated examples used in their paper; and (2) the underlying SD and MV 

relationships in these examples are different from the commonly believed relationships 

between SD and MV. The examples used in most papers, for example, Weeks and 

Wingler (1979), WKS, Post and Diltz (1986) and DSM, include both SASD and MV 

dominances and match the inference drawn in Theorems 5 and 6 in our paper. However, 

the first experiment in Levy and Levy shows the first order SD while the second 

experiment shows the third order SD and its relationship with mean-variance dominance, 

which seems to violate the inference drawn in Theorems 5 and 6.  

  

For both Experiments 1 and 2, let X and Y (X*  and  Y*) be the gain or profit (loss) 

for investing in Stocks A and B with the corresponding probability functions f and g (f*  

and  g*) and the corresponding cumulative probability functions F and G (F*  and  G*) 

respectively. For simplicity, we only illustrate the results of variables of loss2. Tables 8 

and 9 depict the ASD and DSD Integral Differentials for the losses of investing in Stocks 

A and B in Experiments 1 and 2 respectively.  

 

Place Table 8 here 

 

Table 8 shows that  *G  dominates *F  in the sense of both FASD and FDSD, which, 

by applying Theorem 4, tells us that *F  is preferable to *G  for both FASD and FDSD 

investors. We note that hierarchy exists in SD relationships: the first order SD implies the 

second order SD which in turn implies the third order SD and, hence, F also dominates G 

in the sense of SASD, TASD, SDSD and TDSD. Thus, traditionally, we only report the 

lowest dominance order in practice. Table 8 also shows that the mean of *F  is smaller 

than that of *G  while its variance is smaller than that of *G . This implies that *F  

dominates *G   by the AMS rule which, according to Theorem 6, implies that Stock A is 

preferable to Stock B for the SASD risk averter. 

 

                                                
2 The results of variables for profit are available on request.  
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Place Table 9 here 

 

For Experiment 2, Table 9 shows that *F  and *G  do not dominate each other by the 

FASD, SASD, TASD, FDSD or SDSD rules. But the results show that *F  dominates *G  

by the TDSD and DMS rule while *G   dominates *F  by the AMS rule. All these results 

lead us to conclude that Stock B is preferable to Stock A by the TASD rule in terms of 

profit, Stock B is preferable to Stock A by the TDSD rule in terms of loss, and Stock B is 

preferable to Stock A by the AMS rule while Stock A is preferable to Stock B by the 

DMS rule.  

 

We notice that Experiment 2 only illustrates the TASD in term of profit and TDSD 

in term of loss, but not TDSD in term of profit nor TASD in term of loss. In order to 

show examples to complete all the SD domination cases, we modify Experiment 2 by 

adjusting the probabilities for Stock B in Experiment 3 and obtain the results for variables 

of loss depicted in Tables 103.  

 

Place Experiment 3, Table 10 here 

 

For Experiment 3, Table 10 shows that *F  and *G  do not dominate each other by 

the FASD, SASD or FDSD rules. But the results show that *F  dominates *G  by the 

TASD, SDSD and TDSD rules while *G   dominates *F  by the AMS rule. All these 

results lead us to conclude that Stock B is preferable to Stock A by the SASD, TASD, 

TDSD and AMS rules in terms of profit, Stock B is preferable to Stock A by the TASD, 

SDSD, TDSD and AMS rules in terms of loss.   

 

One may doubt the validity of Theorems 5 and 6 as these theorems tell us that if 

Stock A dominates Stock B by the AMS rule, then Stock A will dominate Stock B by the 

SASD rule, but Experiments 1 to 3 show that this is not true. Obtaining these apparently 

contradicting results is not surprising as Hanoch and Levy (1969) already state the 

                                                
3 The results of variables for profit are available on request. 
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dilemma of making decisions from MV choice criteria because they contradict with that 

of the SD theory. Besides, Levy (1989) also shows that the MV efficient set is different 

from the SD efficient sets. These results cannot disprove the theorems as they require the 

condition of the same location-scale family. Since Stocks A and B do not belong to any 

location-scale family, these two theorems cannot be applied in these three experiments. 

   

6. Conclusion 

Our paper extends the work of WKS, DSM and others on Stochastic Dominance 

theory for both return and loss to the first three orders and link the corresponding risk-

averse and risk-loving utility functions to the first three orders. Our approaches have 

practical value for investors as we provide investors with more tools for empirical 

analysis, with which they can identify the first order SD on return and loss and discern 

arbitrage opportunities that could increase his/her utility as well as wealth and set up a 

zero dollar portfolio to make huge profit. In addition, our tools also enable investors to 

identify the third order SD on return and loss so that they can make better choices. We 

also introduce the improved MV criterion to decisions in business planning for risk-

averse and risk-loving investors. These new theoretically-driven methodologies enable 

business planners and investors to analyse many complex contemporary decision 

problems that could occur in various forms including inter-organizational, group-based, 

and technology-enabled. We illustrate the superiority of our approaches with examples 

from WKS, DSM and Levy and Levy (2002). 

 

Though this paper develops methodology in SD theory for business planning and 

investments, our approaches could be applied not only in business planning and 

investment prospects, but also to many different areas in Business, Economics and 

Finance. For example, one could easily incorporate our approaches to explain financial 

theory and anomalies (see, for example, Levy and Sarnat, 1970; McNamara, 1998; Post 

and Levy, 2005; Kuosmanen, 2004; Fong et al., 2005). Also, one could apply our 

approaches to improve the models for risk management (Broll et al., 2006; Gasbarro et al, 

2006) and portfolio selection problems (Soyer and Tanyeri, 2006). One could also 
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incorporate our approaches to extend the theories of multiple preference comparison (see, 

for example,  Teghem et al., 1986; Greco et al., 1999; Luciano et al., 2003).  

 

We note that the combination of SD and MV has superiority to make better 

choices than by SD or by MV singly as MV criterion is easy to compute and give 

investors a quick review of the decision with the information of mean and variance only 

whereas SD could provide information for the entire distribution of each asset for 

comparison. Many studies have supported this viewpoint. For example, Levy (1989) and 

Wong and Ma (2006) have shown that the MV efficient set is different from the SD 

efficient sets. 

 

In addition, we note that some authors propose to use higher order (higher than 

three) stochastic dominance in empirical application. For example, Vinod (2004) 

recommends employing the 4th order stochastic dominance to make the choice among 

investment prospects with illustration in his analysis of 1281 mutual funds realistic. We 

also note that the most commonly-used orders in stochastic dominance for empirical 

analyses, regardless whether they are simple or complicated, are the first three and one 

could easily extend the theory developed in this paper to any order. We thus stop at third 

order in this paper. 

 

Finally, we summarize the decision rules obtained in this paper as follows: the 

first- (second-, third-) order risk-averse investors with utilities belonging to 1
AU  ( 2

AU , 3
AU ) 

will choose Prospect X then Prospect Y if X dominates Y in the sense of the first- (second-, 

third-) order ASD and choose Loss  X*  then Loss  Y*  if Y*  dominates X*   in the sense 

of the first- (second-, third-) order ASD. The first- (second-, third-) order risk-loving 

investors with utilities belonging to 1
DU  ( 2

DU , 3
DU ) will choose Prospect X then Prospect 

Y if X dominates Y in the sense of the first- (second-, third-) order DSD and choose Loss  

X*  then Loss  Y*  if Y*  dominates X*   in the sense of the first- (second-, third-) order 
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DSD. In addition, if X , Y , *X  and *Y  belong to the same location-scale family or the 

same linear combination of location-scale families, the second-order risk-averse investors 

with utilities belonging to 2
AU  will choose Prospect X then Prospect Y if X dominates Y in 

the sense of the AMS rule and choose Loss  X*  then Loss  Y*  if X*  dominates Y*   in 

the sense of the AMS rule whereas the second-order risk-loving investors with utilities 

belonging to 2
DU  will choose Prospect X then Prospect Y if X dominates Y in the sense of 

the DMS rule and choose Loss  X*  then Loss  Y*  if X*  dominates Y*   in the sense of 

the DMS rule. 
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Table 1 : The Risk of three locations and their ASD Integrals 

Costs 

(in million) Probability FASD Integrals SASD Integrals TASD Integrals 

x* f* g* h* AF *
1

 AG*
1

 AH *
1

 AF *
2

AG*
2

AH *
2

AF *
3  AG*

3  AH *
3  

1 0 0.25 0.35 0 0.25 0.35 0 0 0 0 0 0 

2 0.25 0.25 0.05 0.25 0.5 0.4 0 0.25 0.35 0 0.125 0.175 

3 0.25 0 0.1 0.5 0.5 0.5 0.25 0.75 0.75 0.125 0.625 0.725 

4 0.25 0 0 0.75 0.5 0.5 0.75 1.25 1.25 0.625 1.625 1.725 

5 0.25 0.5 0.5 1 1 1 1.5 1.75 1.75 1.75 3.125 3.225 

6 0 0 0 1 1 1 2.5 2.75 2.75 3.75 5.375 5.475 

Mean 3.5 3.25 3.25          

Variance 1.25 3.18 3.39          

The ASD integral A
nM *   is defined in (2) for n= 1, 2 and 3; Cost x* = 6 is included in order to measure 

the effect of x* = 5 on AM *
2 and AM *

3 ; M = F, G and H. 
 

Table 2 : The Risk of three locations and their DSD Integrals 

Costs FDSD Integrals SDSD Integrals TDSD Integrals 

x* DF *
1

 DG*
1

 DH *
1

 DF *
2  DG*

2
DH *

2
DF *

3  DG*
3  DH *

3  

0 1 1 1 3.5 3.25 3.25 6.75 6.875 6.975 

1 1 1 1 2.5 2.25 2.25 3.75 4.125 4.225 

2 1 0.75 0.65 1.5 1.5 1.6 1.75 2.25 2.3 

3 0.75 0.5 0.6 0.75 1 1 0.625 1 1 

4 0.5 0.5 0.5 0.25 0.5 0.5 0.125 0.25 0.25 

5 0.25 0.5 0.5 0 0 0 0 0 0 

The DSD Integral D
nM *  is defined in (2) for n= 1, 2 and 3; Cost x* = 0 is included in order to 

measure the effect of x* = 1 on DM *
2 and DM *

3 ; M = F, G and H. 
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Table 3 : The ASD Integral Differentials for the Risk of three locations 

x* AHF *
1  AGF *

1  AHG*
1  AHF *

2  AGF *
2  AHG*

2
AHF *

3  AGF *
3  AHG*

3

1 0.35 0.25 0.1 0 0 0 0 0 0 

2 0.15 0.25 -0.1 0.35 0.25 0.1 0.175 0.125 0.05 

3 0 0 0 0.5 0.5 0 0.6 0.5 0.1 

4 -0.25 -0.25 0 0.5 0.5 0 1.1 1 0.1 

5 0 0 0 0.25 0.25 0 1.475 1.375 0.1 

6 0 0 0 0.25 0.25 0 1.725 1.625 0.1 

   The ASD Integral Differential A
nPQ*   = A

nP* A
nQ*−  for n=1, 2 and 3; P, Q = F, G and H. 

Table 4 : The DSD Integral Differentials for the Risk of three locations 

x* DHF *
1  DGF *

1  DHG*
1  DHF *

2  DGF *
2  DHG*

2
DHF *

3
DGF *

3  DHG*
3

0 0 0 0 -0.25 -0.25 0 0.225 0.125 0.1 

1 0 0 0 -0.25 -0.25 0 0.475 0.375 0.1 

2 -0.35 -0.25 -0.1 0.1 0 0.1 0.55 0.5 0.05 

3 -0.15 -0.25 0.1 0.25 0.25 0 0.375 0.375 0 

4 0 0 0 0.25 0.25 0 0.125 0.125 0 

5 0.25 0.25 0 0 0 0 0 0 0 

The DSD Integral Differential D
nPQ*  = D

nP* D
nQ*−  for n=1, 2 and 3; P, Q = F, G and H. 

Table 5 : The Profits of three locations and their ASD Integrals 

Profit 

(in million) Probability FASD Integrals SASD Integrals TASD Integrals 

x f g h AF1
 AG1

 AH1
 AF2

 AG2
 AH 2

 AF3
 AG3

 AH 3
 

1 0.25 0.5 0.5 0.25 0.5 0.5 0 0 0 0 0 0 

2 0.25 0 0 0.5 0.5 0.5 0.25 0.5 0.5 0.125 0.25 0.25 

3 0.25 0 0.1 0.75 0.5 0.6 0.75 1 1 0.625 1 1 

4 0.25 0.25 0.05 1 0.75 0.65 1.5 1.5 1.6 1.75 2.25 2.3 

5 0 0.25 0.35 1 1 1 2.5 2.25 2.25 3.75 4.125 4.225 

6 0 0 0 1 1 1 3.5 3.25 3.25 6.75 6.875 6.975 

Mean 2.5 2.75 2.75          

Variance 1.25 3.18 3.39          

The ASD Integral A
nM  is defined in (2) for n = 1, 2 and 3; Profit x  = 6 is included in order to 

measure the effect of x  = 5 on AM 2 and AM 3 ; M = F, G and H. 
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Table 6 : The ASD Integral Differentials for the Profits of three locations 

x AHF1  AGF1  AHG1
AHF2

AGF2  AHG2
AHF3

AGF3  AHG3  

1 0.25 0.25 0 0 0 0 0 0 0 

2 0 0 0 0.25 0.25 0 0.125 0.125 0 

3 -0.15 -0.25 0.1 0.25 0.25 0 0.375 0.375 0 

4 -0.35 -0.25 -0.1 0.1 0 0.1 0.55 0.5 0.05 

5 0 0 0 -0.25 -0.25 0 0.475 0.375 0.1 

6 0 0 0 -0.25 -0.25 0 0.225 0.125 0.1 

  The ASD Integral Differential A
nPQ  = A

nP A
nQ−  for n = 1, 2 and 3; P, Q = F, G and H. 

 

Table 7 : The DSD Integral Differentials for the Profits of three locations 

x DHF1  DGF1  DHG1
DHF2

DGF2
DHG2

DHF3  DGF3  DHG3  

0 0 0 0 0.25 0.25 0 1.725 1.625 0.1 

1 0 0 0 0.25 0.25 0 1.475 1.375 0.1 

2 -0.25 -0.25 0 0.5 0.5 0 1.1 1 0.1 

3 0 0 0 0.5 0.5 0 0.6 0.5 0.1 

4 0.15 0.25 -0.1 0.35 0.25 0.1 0.175 0.125 0.05 

5 0.35 0.25 0.1 0 0 0 0 0 0 

The DSD Integral Differential D
nPQ  = D

nP D
nQ−   for n = 1, 2 and 3; P, Q = F, G and H. 
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Experiment 1 

Stock A Stock B 

Gain (in thousand) Probability Gain (in thousand) Probability 

0.5 0.3 -0.5 0.1 

2 0.3 0 0.1 

5 0.4 0.5 0.1 

  1 0.2 

  2 0.1 

  5 0.4 

 

Experiment 2 

Stock A Stock B 

Gain (in thousand) Probability Gain (in thousand) Probability 

-1.6 0.25 -1 0.25 

-0.2 0.25 -0.8 0.25 

1.2 0.25 0.8 0.25 

1.6 0.25 2 0.25 

 

Experiment 3 

Stock A Stock B 

Gain (in thousand) Probability Gain (in thousand) Probability 

-1.6 0.25 -1 0.25 

-0.2 0.25 -0.8 0.40 

1.2 0.25 0.8 0.30 

1.6 0.25 2 0.05 
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Table 8 : The ASD and DSD Integral Differentials for the Losses of  Stocks A and B in Experiment 1 

Loss(x*) f* g* 
AGF *

1  AGF *
2  AGF *

3  DGF *
1  DGF *

2  DGF *
3  

-6 0 0 0 0 0 0 0.35 1.7875 

-5 0.4 0.4 0 0 0 0 0.35 1.4375 

-2 0.3 0.1 -0.2 0 0 0 0.35 0.3875 

-1 0 0.2 0 -0.2 -0.1 0.2 0.15 0.1375 

-0.5 0.3 0.1 -0.2 -0.2 -0.2 0 0.15 0.0625 

0 0 0.1 -0.1 -0.3 -0.325 0.2 0.05 0.0125 

0.5 0 0.1 0 -0.35 -0.4875 0.1 0 0 

1 0 0 0 -0.35 -0.6625 0 0 0 

Mean -2.75 -2.4       

Variance 3.7125 4.89       

The ASD and DSD Integral Differentials A
nGF *  = A

nG* A
nF *−   and D

nGF *  = D
nG* D

nF *−    for n=1, 2 and 3. 

Loss x*  = 1 is included in order to measure the effect of x*  = 0.5 on A
nGF *  while Loss x*  = -6 is included in 

order to measure the effect of x*  = -5 on D
nGF * for n = 2 and 3.  

 

 

 

 



 35

 
Table 9 : The ASD and DSD Integral Differentials for the Losses of  Stocks A and B in Experiment 2 

Loss( *X ) f* g* 
AGF *

1  AGF *
2  AGF *

3  DGF *
1  DGF *

2  DGF *
3  

-3 0 0 0 0 0 0 0 -0.04 

-2 0 0.25 0.25 0 0 0 0 -0.04 

-1.6 0.25 0 0 0.1 0.02 -0.25 0.1 -0.06 

-1.2 0.25 0 -0.25 0.1 0.06 0 0.1 -0.1 

-0.8 0 0.25 0 0 0.08 0.25 0 -0.12 

0.2 0.25 0 -0.25 0 0.08 0 0 -0.12 

0.8 0 0.25 0 -0.15 0.035 0.25 -0.15 -0.075 

1 0 0.25 0.25 -0.15 0.005 0 -0.15 -0.045 

1.6 0.25 0 0 0 -0.04 -0.25 0 0 

2 0 0 0 0 -0.04 0 0 0 

Mean -0.25 -0.25       

Variance 1.5875 1.5075       

The ASD and DSD Integral Differentials A
nGF *  = A

nG* A
nF *−   and D

nGF *  = D
nG* D

nF *−    for n=1, 2 and 3. 

Loss *X   = 2 is included in order to measure the effect of x  = 1.6 on A
nGF *  while Loss *X   = -3 is included 

in order to measure the effect of x  = -2 on D
nGF * for n = 2 and 3.  
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Table 10 : The ASD and DSD Integral Differentials for the Losses of  Stocks A and B in Experiment 3 

Loss( *X ) f* g* 
AGF *

1  AGF *
2  AGF *

3  DGF *
1  DGF *

2  DGF *
3  

-3 0 0 0 0 0 0 -0.12 -0.436 

-2 0 0.25 0.25 0 0 0 -0.12 -0.316 

-1.6 0.25 0 0 0.1 0.02 -0.25 -0.02 -0.288 

-1.2 0.25 0 -0.25 0.1 0.06 0 -0.02 -0.28 

-0.8 0 0.3 0.05 0 0.08 0.25 -0.12 -0.252 

0.2 0.25 0 -0.2 0.05 0.105 -0.05 -0.07 -0.157 

0.8 0 0.4 0.2 -0.07 0.099 0.2 -0.19 -0.079 

1 0 0.05 0.25 -0.03 0.089 -0.2 -0.15 -0.045 

1.6 0.25 0 0 0.12 0.116 -0.25 0 0 

2 0 0 0 0.12 0.164 0 0 0 

Mean -0.25 -0.37       

Variance 1.5875 1.3611       

The ASD and DSD Integral Differentials A
nGF *  = A

nG* A
nF *−   and D

nGF *  = D
nG* D

nF *−    for n=1, 2 and 3. 

Loss *X   = 2 is included in order to measure the effect of x  = 1.6 on A
nGF *  while Loss *X   = -3 is included 

in order to measure the effect of x  = -2 on D
nGF * for n = 2 and 3.  

 

 

 


