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Abstract

In this paper we consider the standard voting model with a finite set of alternatives
A and n voters and address the following question: what are the characteristics of
domains D that induce the property that every strategy-proof social choice function
f : Dn → A satisfying unanimity, has the tops-only property? We first impose a
minimal richness condition which ensures that for every alternative a, there exists an
admissible ordering where a is maximal. We identify conditions on D that are sufficient
for strategy-proofness and unanimity to imply tops onlyness in the general case of n

voters and in the special case, n = 2. We provide an algorithm for constructing tops-
only domains from connected graphs with elements of A as nodes. We provide several
applications of our results. Finally, we relax the minimal richness assumption and
partially extend our results.

1 Introduction

In the mechanism design problem, it is assumed that agents have private information but

collectively wish to attain “optimal” outcomes which depend on this private information.

The goal of mechanism design theory is to identify the outcomes which can be achieved

(as a function of the “state of the world” or the private information held by agents) when

agents are rational and fully recognize their strategic opportunities. The mapping between

the profile of private information and optimal outcomes is called a social choice function or

SCF. A natural requirement is for the SCFs to be strategy-proof, i.e. they should provide all

agents with dominant strategy incentives to reveal their private information.

Whether or not a SCF is strategy-proof depends critically on the amount of the private

information it “uses” to compute the optimal outcome. At one extreme, if an SCF is constant

and does not depend at all on the information of agents, it is strategy-proof because agents
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cannot gain by misrepresenting their information. On the other hand, if the SCF depends

“intricately” on private information, we imagine that it is unlikely to be strategy-proof.

This is because it will afford significant opportunities for agents to benefit by lying. The

models that we are concerned with (and these models are preponderant in the literature) are

those where an agents’ private information consists of her preferences over some fixed set of

alternatives. Our goal is to investigate domains of preferences over which all strategy-proof

SCFs use only the information of the maximal element or “top” of agent preferences in order

to compute its output.

We consider the standard voting model. There are n agents called voters and a fixed and

finite set of alternatives A. Each voter i has a preference Pi which is a linear ordering over

the elements of A. The set of possible orderings for each agent is the set D which is a subset

of the set of all linear orders over A. Note that we are assuming that the possible set of

preferences is the same for all agents. A SCF is a mapping f : Dn → A. We are interested in

identifying conditions on D with the property that all strategy-proof SCFs defined over this

domain, satisfying the additional (weak) property of unanimity, have the tops-only property.

Tops-only SCFs are well-known in the social choice literature. The most familiar one

is the complete domain or the domain of all linear orderings over A. If A has at least

three elements, then the Gibbard-Satterthwaite Theorem states that every strategy-proof

SCF defined over the complete domain must be dictatorial. A dictatorial SCF always picks

the top-ranked alternative of a fixed voter called the dictator. Since the the outcome of a

dictatorial SCF for every profile of preferences depends only on the top-ranked alternative of

the dictator, the complete domain is a tops-only domain. The other salient tops-only domain

is the domain of single-peaked preferences. This domain is the cornerstone of much of the

modern literature on political economy. There are several variants of these domains as well

as other domains which also have the tops-only property; many of them are discussed in the

paper. Our objective is to identify the common features of these domains which precipitate

the tops-only property. Our results unify a number of disparate results pertaining to specific

domains and also identify some new ones. We note that if a domain can be classified as

a tops-only domain, the task of characterizing strategy-proof SCFs over these domains is

considerably simplified.

Most of our paper is concerned with domains which satisfy an additional property called

minimal richness. Such domains have the feature that for every alternative, there is an

admissible ordering where the alternative is ranked first. We prove two results for such

domains. In the case of two voters, we provide an extremely simple property on domains

which we call Property T that is sufficient for tops-onlyness. Unfortunately, we are unable to

prove that this property is also sufficient when there are more than two voters. However we

are able to provide another property called Property T ∗ which guarantees the tops-onlyness

of domains independently of the number of voters. We show that Property T ∗ together with

a symmetry property on domains implies Property T .
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Property T is a condition formulated in terms of the notion of “connections” between

alternatives originally proposed in Aswal et al. (2003). Fix a domain D. We say that two

alternatives are connected if there exists an admissible ordering where a is ranked first and b

second, and another admissible ordering where b is ranked first and a second. The domain D
satisfies Property T if every ordering Pi ∈ D has the property that every alternative that is

not first-ranked in Pi is connected to an alternative that is preferred to it under Pi. Our first

result states that every domain satisfying this property also satisfies the tops-only property.

Property T is easy to verify in practice. We provide an algorithm to generate domains

satisfying this property from arbitrary graphs that are connected (in the conventional graph-

theoretic sense). We also use this property to provide new conditions for domains to be

dictatorial which are different from those in Aswal et al. (2003). In doing this, we use the

well-known result that a domain that is dictatorial for n = 2 is also dictatorial for general

n. We further use our new condition for dictatorial domains to show that such a domain

must contain 2m orderings where m ≥ 3 is the cardinality of |A|. Moreover, a domain

which attains this bound is identified. This answers a question raised in Aswal et al. (2003).

Recently, the same result on minimal dictatorial domains has been independently established

in Sato (2008) Chapter 3.

We conjecture that Property T is sufficient for tops-onlyness generally but are unable

at this time to either prove it or provide a counterexample. Our alternative Property T ∗

is also a fairly simple condition but does not rely on the connectivity structure of the do-

main. We demonstrate that salient domains such as those of single-peaked and generalized

single-peaked domains and multi-dimensional domains with product structure and separa-

ble preferences (and various sub-domains of these domains) all satisfy Property T ∗. Their

tops-onlyness is therefore an immediate consequence of our general result. We also apply

our results to models of multi-dimensional voting with constraints where preferences are ad-

ditively separable. A well-known example of such a model is that of choosing committees

when there are restrictions regarding their size or composition. We distinguish between two

types of models here, one where the domain consists of preferences whose tops are feasible

and another where no such restriction is made. We show that Property T ∗ is satisfied in the

former case but not in the latter.

Our final section is an attempt to deal with domains which do not satisfy the minimal

richness assumption. There are several well-known examples of such domains such as those

where sets are ranked according to some expected utility criterion. There are serious techni-

cal difficulties in extending our results to these domains. However, we show that a suitable

modification of Property T ∗ implies a weaker version of the tops-onlyness result which per-

tains only to alternatives which can be first-ranked. We apply this result to several domains.

We show that in some cases, general tops-onlyness can also be obtained by exploiting specific

aspects of the domains being considered.

A paper which is close to ours in spirit is Weymark (2008). It proposes a general proof
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technique which can be used to prove the tops-onlyness property of domains. One advantage

of the approach in this paper over ours is that it also applies to models where the set of

alternatives is a non-finite subset of Euclidean space. On the other hand, it does not seek to

identify sufficient conditions on domains for tops-onlyness which is our primary objective. At

a formal level there is no overlap between the results of the two papers. However both papers

are motivated by the same issues - that of trying to understand the structure of tops-only

domains and trying to unify, refine and extend a number of isolated results in this area.

The paper is organized as follows. Section 2 introduces the basic models and definitions.

Section 3 presents the main results for minimally rich domains. Section 4 discusses appli-

cations of the results in Section 3 while Section 5 deals with non-minimally rich domains.

Section 6 concludes.

2 Preliminaries

We let A denote a set of alternatives with |A| = m < ∞. The set of voters is N = {1, ..., n}.
Each voter i is assumed to have a linear order Pi over the elements of the set A which we

shall refer to as her preference ordering. For all a, b ∈ A, aPib will signify the statement “a

is strictly preferred to b according to Pi”. We let P denote the set of all linear orders over

the elements of the set A. The set of all admissible ordering is a set D ⊂ P . A preference

profile P ≡ (P1, ..., Pn) ∈ Dn is a list of admissible preference orderings, one for each voter.

For all k = 1, ..,m, Pi ∈ D and a ∈ A, we shall say that a is kth ranked in Pi if

|{b ∈ A|aPib}| = m− k. We will write a = rk(Pi) if a is kth ranked in Pi. In the special case

where a = r1(Pi) we will write a = τ(Pi).

The fundamental object of study in this paper is a Social Choice Function which we

define below.

Definition 1 A Social Choice Function (SCF) is a mapping f : Dn → A.

We now introduce the important concept of a minimally rich domain. Such a domain

has the property that for every a, there is a ordering Pi in the domain where a is the best

alternative. Note that this implies |D| ≥ m.

Definition 2 The domain D satisfies minimal richness if for all a ∈ A, there exists Pi ∈ D
such that τ(Pi) = a.

We will assume in Sections 2, 3 and 4 that domains under consideration satisfy minimal

richness.

We now introduce some properties of SCFs.

Definition 3 A SCF f : Dn → A satisfies unanimity if for all P ∈ Dn and a ∈ A such

that τ(Pi) = a for all i ∈ N , we have f(P ) = a.
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If an SCF satisfies unanimity, then it always respects consensus whenever it exists, i.e.

an alternative ranked first by all agents in a profile is always picked. Observe that a SCF

satisfying unanimity and defined over a minimally rich domain must have a range of m.

Each voters’ preference ordering is private information, i.e. known only to herself. These

preferences must therefore be elicited by the mechanism designer. If a SCF is strategy-proof,

then no voter can benefit by misrepresenting her preferences irrespective of her beliefs about

the preference announcement of other voters.

Definition 4 A SCF f : Dn → A is manipulable by voter i at profile P ∈ Dn via P ′
i ∈ D

if f(P ′
i , P−i)Pif(P ). A SCF is strategy-proof if it is not manipulable by any voter.

It is well-known that strategy-proofness is a stringent requirement for SCFs to satisfy. In

general, SCFs which “use” a lot of information are more vulnerable to manipulation because

they afford voters greater opportunities for being strategic. Our goal in this paper is to

investigate domains where all strategy-proof SCFs only use information regarding the most

preferred alternatives of all voters.

Definition 5 The profiles P, P ′ ∈ Dn are tops-equivalent if τ(Pi) = τ(P ′
i ) for all i ∈ N .

The SCF f : Dn → A satisfies the tops-only property if f(P ) = f(P ′) whenever P and P ′

are tops equivalent.

Several well-known SCFs satisfy the tops-only property and we will describe some of

these subsequently. Our objective is to investigate domains where strategy-proofness and

unanimity imply the tops only property.

Definition 6 The domain D satisfies the tops only property if every SCF f : Dn → A

which is strategy-proof and satisfies unanimity also satisfies the tops only property.

Our objective in this paper is to provide sufficient conditions for domains to satisfy the

tops-only property. In order to do so, we need to introduce some auxiliary concepts and

results.

Let D be an arbitrary domain and let f : Dn → A be an arbitrary SCF. For all i ∈ N

and P−i ∈ DN−1, let Oi(P−i) = {a ∈ A|f(Pi, P−i) = a, Pi ∈ D}. The set Oi(P−i) will be

referred to as the option set for voter i, given P−i and is the restricted range of the SCF f

given P−i. These sets were first introduced in Barberà and Peleg (1990).

We record two elementary facts about these sets (proofs can be found in Barberà and Peleg

(1990)).

• 1. For any strategy-proof SCF f : Dn → A, the following holds: for all (Pi, P−i) ∈ Dn,

f(Pi, P−i) = C(Pi, Oi(P−i)).
1

1For all Pi ∈ P and B ⊂ A, C(Pi, B) is the maximal element in the set B according to the order Pi.
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• 2. For any SCF f : Dn → A satisfying unanimity, the following holds: for all i ∈ N ,

P−i ∈ DN−1 and a ∈ A such that τ(Pj) = a for all j 6= i, we have a ∈ Oi(P−i).

A tops-only property for option sets can be defined in a natural way and shown to be

equivalent to the tops-only property.

Proposition 1 The SCF f satisfies the tops-only property if and only if for all i ∈ N

and P−i, P
′
−i ∈ Dn−1 which are tops equivalent (i.e. Pj = P ′

j for all j 6= i), we have

Oi(P−i) = Oi(P
′
−i).

Proof : : Suppose Oi(P−i) = Oi(P
′
−i) whenever P−i and P ′

−i are tops-equivalent for all i ∈
N . Let P, P ′ ∈ Dn be profiles which are tops-equivalent. Then, f(P ) = f(P1, P−1) =

C(P1, O1(P−1)) = C(P1, O1((P
′
−1)) = f(P1, P

′
−1) = C(P ′

2, O2(P1, P
′
−{1,2})) =

C(P ′
2, O2(P

′
1, P

′
−{1,2})) = f(P ′) which establishes that f is tops-only.

To prove the converse assume that f satisfies the tops-only property but there exists

i ∈ N , P−i, P
′
−i ∈ DN−1 which are tops-equivalent but Oi(P−i) 6= Oi(P

′
−i). Assume w.l.o.g

that a ∈ Oi(P−i) − Oj(P
′
−i). Since D is minimally rich, there exists Pi ∈ D such that

τ(Pi) = a. Then f(Pi, P−i) = a 6= f(Pi, P
′
−i) which contradicts the initial hypothesis that f

is tops-only. ¥

We now focus attention on the tops-only property of option sets.

3 Results

3.1 The Two-Voter Case

The central notion for our condition on admissible domains is that of connections which was

introduced in Aswal et al. (2003).

Definition 7 Fix a domain D. We say that alternatives a, b ∈ A are connected if there

exist Pi, P
′
i ∈ D such that (i) a = τ(Pi) and b = r2(Pi) and (ii) b = τ(P ′

i ) and a = r2(P
′
i ).

According to the definition a and b are connected if there exists an admissible ordering

where a and b are ranked first and second respectively and another ordering where b and a

are ranked first and second respectively. If a and b are connected, we denote it by a ∼ b.

Definition 8 The domain D satisfies Property T if for all Pi ∈ D and a ∈ A − {τ(Pi)}
there exists b ∈ A− {a} such that (i) bPia and (ii) b ∼ a.
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Property T requires the following. For any alternative in an admissible order (which is

not the most preferred alternative of that order) there must exist another alternative which

is better than it and to which it is connected. We will provide several instances of domains

satisfying Property T in the next section.

Theorem 1 Assume n = 2. If a minimally rich domain satisfies Property T , then it satisfies

the tops-only property.

Proof : Let D be an arbitrary domain satisfying Property T . We will show that every

SCF f : D2 → A that is strategy-proof and satisfies unanimity also satisfies the tops-only

property.

We shall refer to the two voters as i and j. Using Proposition 1, it suffices to show that

if D satisfies Property T , then Oj(Pi) = Oj(P
′
i ) whenever Pi and P ′

i are tops-equivalent. Let

a ∈ Oj(Pi) where a = rk(Pi). We will show by induction on k that a ∈ Oj(P
′
i ).

We begin by observing that in the case where k = 1, a ∈ Oj(P
′
i ) follows because f

satisfies unanimity. Now assume that a = rk′(Pi) and a ∈ Oj(Pi) implies a ∈ Oj(P
′
i ) for all

k′ < k. We will show that a = rk(Pi) and a ∈ Oj(Pi) implies a ∈ Oj(P
′
i ).

Since D satisfies Property T , there exists b ∈ A such that bPia and b ∼ a. We first claim

that b ∈ Oj(Pi). To see this, assume to the contrary that b /∈ Oj(Pi). Since b ∼ a, there exists

Pj ∈ D such that b = τ(Pj) and a = r2(Pj). Using fact 1 and the assumptions that b /∈ Oj(Pi)

and a ∈ Oj(Pi), it follows that f(Pi, Pj) = a. Let P ′
i ∈ D be such that τ(P ′

i ) = b (again

feasible because of the minimal richness assumption on D). By unanimity, f(P ′
i , Pj) = b.

But then since bPia, i manipulates at (Pi, Pj) via P ′
i , contradicting the strategy-proofness of

f . Hence b ∈ Oj(Pi).

Since bPia, it must be the case that b = rk′(Pi) for some k′ < k. Therefore the induction

hypothesis implies that b ∈ Oj(P
′
i ).

We now claim that a ∈ Oj(P
′
i ). Suppose that this is false. Since b ∼ a, there exists

P ′
j ∈ D such that and a = τ(P ′

j) and b = r2(P
′
j). Since a ∈ Oj(Pi)−Oj(P

′
i ) and b ∈ Oj(P

′
i ),

it follows that f(Pi, P
′
j) = a and f(P ′

i , P
′
j) = b. Since bPia, i will manipulate f at (Pi, P

′
j)

via P ′
i contradicting the strategy-proofness of f . Hence a ∈ Oi(P

′
i ). An identical argument

with i and j interchanged establishes that Oi(Pj) = Oi(P
′
j) whenever Pj and P ′

j are tops-

equivalent. Hence f satisfies the tops-only property. ¥

Observation 1 The proof of Theorem 1 also reveals the structure of option sets of strategy-

proof SCFs defined over domains satisfying Property T . For any Pi ∈ D, Oj(Pi) consists of

a collection of chains. A chain is a sequence {a1, a2, ..., aK} where a1 = τ(Pi), akPiak+1 and

ak ∼ ak+1 for k = 1, ..., K − 1. A critical property of the two-voter setting is that the peak

is always a member of the option set (guaranteed by unanimity) and is the first element of
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the chain. The complications of the more than two voter case arise precisely because this

property holds only when there are two voters.

3.2 The General Case

We are unable to prove that Property T is sufficient for D to satisfy the tops-only property

when there are three or more voters. However, we are able to identify a stronger condition,

which we call Property T ∗, that is sufficient independently of the number of voters.

For all Pi ∈ D and a ∈ A − τ(Pi), let B(Pi, a) = {x ∈ A|xPia} and W (Pi, a) = {x ∈
A|aPix}. Thus, B(Pi, a) and W (Pi, a) are the sets of elements which are respectively better

than and worse than a according to Pi.

Let B̄(Pi, a) = {x ∈ A|x ∈ B(P ′
i , a) for all P ′

i such that τ(Pi) = τ(P ′
i )}. This set consists

of alternatives that are better than a in all orderings P ′
i that are tops equivalent to Pi. Note

that B̄(Pi, a) 6= ∅, since τ(Pi) ∈ B̄(Pi, a).

Definition 9 Fix a domain D. Let a ∈ A and Pi ∈ D be such that a 6= τ(Pi). Then a is

satisfactory for Pi if for all x ∈ B̄(Pi, a) there exists P̄i such that τ(P̄i) = a and xP̄iW (Pi, a).

Moreover D satisfies Property T ∗ if for all Pi ∈ D and a ∈ A − τ(Pi), a is satisfactory for

Pi.

Property T ∗ can be thought of as a sort of reversality property. Let Pi be an admissible

ordering and let a be an alternative distinct from y = τ(Pi). Let B̄(Pi, a) denote the

alternatives which are always better than a in all orderings where y is maximal. Pick an

arbitrary alternative x ∈ B̄(Pi, a). Property T ∗ postulates the existence of an ordering where

a is maximal and x is preferred to all alternatives that a was better than under Pi.

In the next section we will provide several examples of domains that satisfy Property

T ∗. Here we comment on the relationship between Properties T and T ∗. We first show that

Property T ∗ together with a symmetry property implies Property T .

Definition 10 The domain D satisfies link symmetry if, for all a, b ∈ A, a ∼ b whenever

there exists Pi ∈ D such that τ(Pi) = a and r2(Pi) = b.

This symmetry condition implies that whenever there exists an admissible ordering where

a and b are first and second ranked respectively, there exists another ordering where b and a

are first and second ranked respectively.

Proposition 2 Let D be a domain satisfying link symmetry and Property T ∗. Then it

satisfies Property T .
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Proof : : Let D be a domain satisfying link symmetry and Property T ∗. Let Pi ∈ D and

a ∈ A − τ(Pi). Pick an arbitrary x ∈ B̄(Pi, a). From Property T ∗, it follows that there

exists P̄i ∈ D such that τ(P̄i) = a and xP̄iW (Pi, a). Let y = r2(P̄i). By link symmetry y is

connected to a. Note that either y = x or yP̄ix since y ∈ W (Pi, a) implies that xP̄iW (Pi, a)

is violated. Therefore y ∈ B(Pi, a). Hence Property T is satisfied. ¥

Thus Property T ∗ together with link symmetry implies Property T . Property T does

not, of course, imply Property T ∗. In the section on constrained voting, we will provide

an example of a well-behaved domain which satisfies Property T but violates Property T ∗.
Finally, we identify a property expressed in terms of linkages which implies both Properties

T and T ∗. Consider the following property: for all Pi ∈ D, for all a ∈ A − τ(Pi) and for

all x ∈ B̄(Pi, a), we have x ∼ a. This property clearly implies both Properties T ∗ and T .

However, we do not work with this property because it is rather strong and several domains

which satisfy Properties T and T ∗ do not satisfy it.

Our main result in this section is the following.

Theorem 2 If a minimally rich domain satisfies property T ∗, then it satisfies the tops-only

property.

Proof : : We will prove the result by induction on the number of voters n. Let D be a

domain satisfying Property T ∗. Since SCFs under consideration satisfy unanimity, the result

is trivially true for the case n = 1. Assume now that for some arbitrary integer n, every

SCF f : Dn → A which is strategy-proof and satisfies unanimity, also satisfies the tops-only

property. We will show that an arbitrary SCF f : Dn+1 → A which is strategy-proof and

satisfies unanimity, also satisfies the tops-only property. In view of Proposition 1, it will be

sufficient to show the following. Let i be an arbitrary voter and let P−i, P
′
−i ∈ Dn be two

tops equivalent profiles; then Oi(P−i) = Oi(P
′
−i). We proceed in four steps.

Step 1: Pick j 6= i and let Pi, P
′
i ∈ D be tops equivalent. Then C(Pi, Oi(Pi, P−{i,j})) =

C(P ′
i , Oi(P

′
i , P−{i,j})).

Define the n-voter SCF g : Dn → A as follows: for all Pi ∈ D and P−{i,j} ∈ Dn−2,

f(Pi, Pi, P−{i,j}) = g(Pi, P−{i,j}). In other words, g is obtained by “coalescing” voters i

and j. It is easy to verify that g is strategy-proof and satisfies unanimity (details may be

found in Sen (2001). The induction hypothesis therefore implies that g satisfies the tops-

only property. Since Pi and P ′
i are tops equivalent, it follows that C(Pi, Oi(Pi, P−{i,j})) =

f(Pi, Pi, P−{i,j}) = g(Pi, P−{i,j}) = g(P ′
i , P−{i,j}) = f(P ′

i , P
′
i , P−{i,j}) = C(P ′

i , Oi(P
′
i , P−{i,j}).

This completes Step 1.

Step 2: Let x∗ = f(Pi, Pi, P−{i,j}) and let a ∈ Oi((Pi, P−{i,j})) be such that a 6= x∗. Then

x∗ ∈ B̄(Pi, a).

Suppose that the claim in Step 2 is false. Then there exists P ′
i ∈ D such that Pi and P ′

i

are tops equivalent and aP ′
ix
∗. By Step 1, f(P ′

i , P
′
i , P−{i,j}) = x∗. Let y = f(P ′

i , Pi, P−{i,j}) =
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C(P ′
i , Oi(Pi, P−{i,j})). Since a ∈ Oi((Pi, P−{i,j})), it must be the case that either y = a or

yP ′
ia. Clearly voter j will manipulate in profile (P ′

i , P
′
i , P−{i,j}) via Pi. This completes Step

2.

Step 3: Oi(Pj, P−{i,j}) = Oi(P
′
j , P−{i,j}) whenever Pj and P ′

j are tops equivalent.

Suppose that the claim in Step 3 is false. We can assume without loss of generality

that there exists a ∈ Oi(Pj, P−{i,j}) − Oi(P
′
j , P−{i,j}). Suppose a = τ(Pj) = τ(P ′

j). Pick

Pi ∈ D such that τ(Pi) = a. Then f(Pi, Pj, P−{i,j}) = a but f(Pi, P
′
j , P−{i,j}) = b 6= a. Since

τ(P ′
j) = a, we have aP ′

jb and voter j will manipulate at (Pi, P
′
j , P−{i,j}) via Pi.

Assume therefore that a 6= τ(Pj). Let x∗ = f(Pj, Pj, P−{i,j}). It follows from Step 2 that

either a = x∗ or x∗ ∈ B̄(Pj, a). If a = x∗, then a ∈ Oi(P
′
j , P−{i,j}) since f(Pj, Pj, P−{i,j}) =

f(P ′
j , P

′
j , P−{i,j}). Suppose therefore that a 6= x∗. Since D satisfies Property T ∗, there exists

P̄j ∈ D such that τ(P̄i) = a and x∗P̄jW (Pj, a). Then f(P̄j, Pj, P−{i,j}) = C(P̄j, Oi(Pj, P−{i,j})) =

a. Let f(P̄j, P
′
j , P−{i,j}) = C(P̄j, Oi(P

′
j , P−{i,j})) = y. Since x∗ ∈ Oi(P

′
j , P−{i,j})) (this follows

easily from Step 1) and x∗W (Pj, a), it follows that yPja. Hence voter j manipulates at

(P̄j, Pj, P−{i,j}) via P ′
j . This completes Step 3.

Step 4: Oi(P−i) = Oi(P
′
−i) whenever P−i = P ′

−i are tops equivalent.

This follows from repeated application of Step 3. ¥

We now discuss issues pertaining to the necessity of Properties T and T ∗.

3.3 Necessity

Property T ∗ is not necessary for the tops-only property to hold. We provide an example

showing this in Section 4.6.2 (Example 5). However we show below that if m ≥ 3 it is

possible to construct non tops-only domains which violate both Property T and T ∗.

Example 1 Let A = B ∪ C, B ∩ C = ∅. Let B = {b1, b2, ..., bm1} and C = {c1, c2, ...., cm2}
and assume m1 ≥ 2. Let D̂ be the largest domain of orderings Pi which satisfies the restriction

that either bjPicj for all bj ∈ B and cj ∈ C or cjPibj for all bj ∈ B and cj ∈ C. In other

words, either all alternatives in B are above all alternatives in C or vice-versa. Observe that

|D̂| = 2m1!m2!. Observe also that all alternatives in B are mutually connected; the same is

true for all alternatives in C. However alternatives in B are not connected to alternatives in

C. This immediately implies that Property T is violated. Since link symmetry is satisfied

by D̂, Property T ∗ is also violated. We claim that D̂ is not a tops-only domain. To see this

consider the case of n = 2 and the following SCF: voter 2 chooses the maximal alternative

from either B or C depending on which one of these sets is on “top” of voter 1’s preference

ordering. It is straightforward to verify that the SCF is strategy-proof. Let P1 be an ordering

whose top elements are from B. Let P2 be the ordering c1P2...P2cm2P2b1P2....P2bm1 and let
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P ′
2 be the ordering c1P

′
2...P

′
2cm2P

′
2b2, P

′
2....P

′
2bm1 . Clearly the profiles (P1, P2) and (P1, P

′
2) are

tops-equivalent. However f(P1, P2) = b1 and f(P1, P
′
2) = b2 violating tops-onlyness.

We now turn to applications of our results.

4 Applications

4.1 An Algorithm for Generating Tops-Only Domains for

n = 2 from Graphs

We first show how Property T in conjunction with an arbitrary connected graph with m

nodes can be used to generate domains satisfying the tops-only property in the case of two

voters.

Let G be a graph with m nodes labeled {a1, .., am}. We restrict attention to connected

graphs, i.e. to graphs which have the property that every pair of nodes in G, is connected

by a sequence of edges in G. Domains D satisfying Property T can be constructed from G

by using G in the following manner: aj ∼ ak iff aj and ak are connected by an edge in G.

The following algorithm can be used. Pick an arbitrary aj. For every ak such that aj and

ak are connected by an edge, create an ordering where aj is first and ak is second. The third

ranked alternative in the ordering is an alternative which is connected by an edge to either

aj or ak. The ordering is completed by ensuring that if ar is ranked k, there is an alternative

as which is ranked k′ with k′ < k and ar and as are connected by an edge in G. It is easy to

verify that such an ordering can always be constructed if G is a connected graph.

We clarify the algorithm with the help of the following example.

Example 2 Let A = {a1, a2, a3, a4, a5, a6} and let G be the graph in Figure 1. Let P1

be an ordering consistent with G whose first-ranked alternative is a1. Since the only edge

in G connecting a1 is one which connects it to a2, r2(P1) = a2. By a similar argument,

r3(P1) = a3. The fourth ranked alternative can either be a6 or a4 and so on. Adding

orderings with each alternative as first ranked and proceeding as above, we can ensure that

Property T is satisfied.

Let D comprise the orderings {P1, P2, ..., P12} which have been constructed using the

algorithm.

It is easily verified that aj ∼ ak for all aj, ak ∈ A if and only if aj and ak are connected

by an edge in G. Clearly D satisfies Property T . Therefore Theorem 1 implies that all

two-person SCFs defined over D satisfies the tops-only property.

Is D dictatorial? 2 Interestingly, the answer is no. Consider the following two-person

SCF defined over this domain. Voter 1 gets his first-ranked alternative in all profiles except

2A formal definition is provided in the next subsection, Definition 12.
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a1

a2

a3

a4

a5

a6

Figure 1: A Connectivity Graph

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12

a1 a2 a2 a3 a3 a3 a4 a4 a5 a5 a6 a6

a2 a1 a3 a2 a6 a4 a5 a5 a6 a4 a3 a5

a3 a3 a4 a6 a5 a2 a3 a3 a3 a3 a2 a3

a6 a4 a6 a4 a4 a1 a2 a2 a4 a2 a1 a2

a5 a5 a5 a5 a2 a5 a6 a6 a2 a1 a5 a3

a4 a6 a1 a1 a1 a6 a1 a1 a1 a6 a4 a1

Table 1: The domain D

those in which she ranks a1 first. In this case the SCF selects voter 2’s best alternative from

the set {a1, a2}. Voter 2 clearly cannot manipulate. Voter 1 gets her second best alternative

when her ordering is P1; however there is no way for her to get her best alternative a1 since a2

beats a1 for all admissible orderings. More subtly, this SCF satisfies the tops-only property.

Finally note that there are other domains which can be constructed from G by the

algorithm. For instance, let P13 be the ordering: a6P13a3P13a5P13a2P13a1P13a4 and let D′ =
D∪{P13}. Then the connectivity structure of alternatives in D′ is consistent with that of G

and it also satisfies Property T . Hence D′ is also a tops-only domain.

4.2 Dictatorial Domains

We now consider applications pertaining to dictatorial domains.

Definition 11 A SCF f : Dn → A is dictatorial if there exists a voter i such that for all

P ∈ Dn, f(P ) = τ(Pi).

12



Definition 12 The domain D is dictatorial if every strategy-proof SCF f : DN → A

satisfying unanimity is dictatorial.

Definition 13 The domain D is a minimal dictatorial domain if it is dictatorial and |D| ≤
|D′| for every dictatorial domain D′.

A dictatorial SCF obviously satisfies the tops-only property and a dictatorial domain

is therefore a tops-only domain. We consider two variants of Property T and examine

dictatorial domains using them. An interesting feature of these conditions is that these are

respectively a weakening and a strengthening of the two-voter condition for tops-onliness

rather than the three or more condition (i.e. Property T rather than Property T ∗). The

reason for this is that the extension from two to multi-voter settings for dictatorial domains

(satisfying minimal richness) comes for free.

We now turn to a strengthening of Property T that yields a sufficient condition for a

domain to be dictatorial. This new condition is independent of the condition of linked

domains and yields new results on dictatorial domains. Indeed we are able to solve the

question of identifying a minimal dictatorial domain raised in Aswal et al. (2003), with our

condition.

Definition 14 Let B ⊂ A such that m > |B| > 1 and let a ∈ B. The domain D satisfies

Property T ′ if there exists P̄i, P
′
i ∈ D and c, d ∈ A such that (i) c ∈ B, d ∈ A−B and c ∼ d

and (ii) τ(P̄i) = τ(P ′
i ) = a, cP̄id and dP ′

i c.

Property T ′ expresses another reversality property. Pick a partition (B,A−B) of the set

A such that B has at least two elements and A−B at least one and let a ∈ B. Then, there

exists c ∈ B and d ∈ A−B which are connected and for which an appropriate reversal exists;

in particular, there exists admissible orderings which have a as the peak and for which the

preferences for c and d are reversed. Informally, every non-trivial partition of A must have a

reversal. Our main result of this subsection is that Property T ′ in conjunction with Property

T precipitates dictatorship provided m ≥ 3. Note that Property T ′ is trivially satisfied if

m < 3.

Definition 15 The domain D satisfies Property T d if it satisfies both Properties T and T ′.

We now state the main result of this subsection.

Theorem 3 Assume m ≥ 3. If a domain satisfies T d, then it is dictatorial.

Proof : : In view of the results in Aswal et al. (2003),Kim and Roush (1989), it suffices to

prove the result in the case of two voters, i.e. to prove that if D satisfies Property T d, then

f : D2 → A is strategy-proof and satisfies unanimity implies that f is dictatorial. We assume

13



therefore that n = 2 (the set of voters will be denoted by N = {i, j}) and that D satisfies

Property T d. Let f : D2 → A be a strategy-proof SCF satisfying unanimity.

Suppose that the Theorem is false. Since m ≥ 3, we can assume w.l.o.g that there exists

Pi ∈ D and m > Oj(Pi) > 1. Let B = Oj(Pi) and a = τ(Pi). Note that a ∈ Oj(Pi) since f

satisfies unanimity. Let c, d ∈ A and P̄i, P
′
i ∈ D be as specified in the Definition 13. Since D

satisfies Property T , Theorem 1 implies that Oj(Pi) = Oj(P̄i) = Oj(P
′
i ). Now pick Pj ∈ D

such that τ(Pj) = d and r2(Pj) = c (this is feasible because c ∼ d by assumption). Also

since d /∈ Oj(Pi) and c ∈ Oj(Pi), we have f(P̄i, Pj) = f(P ′
i , Pj) = c. Let P ∗

i ∈ D be such

that τ(P ∗
i ) = d. Then unanimity implies f(P ∗

i , Pj) = d. Since dP ′
i c by assumption, voter i

manipulates f at (P ′
i , Pj) via P ∗

i which contradicts the assumption that f is strategy-proof.

¥

Observation 2 Property T d is distinct from the linked domain property in Aswal et al.

(2003). In order to see this it is sufficient to note that the definition of a linked domain

depends entirely on the connectivity relation unlike T d while Property T d requires restrictions

other than connections. It is possible to provide a weaker (but less transparent) version of

Property T and Property T d which generalizes the Aswal et al. (2003) result. We do not

pursue this line of enquiry further in this paper.

We now provide several applications of Theorem 3.

4.2.1 Free Pair at the Top and Complete Domains

A free pair at the top or FPT domain is a domain where every pair of alternatives are

connected. Note that such domains can be much smaller than the universal domain P .

Definition 16 The domain D satisfies the free pair at the top domain (FPT) if a ∼ b for

all a, b ∈ A.

It is easy to verify that the FPT domain satisfies Property T d. We only show that this

domain satisfies Property T ′. Let B ⊂ A with m > |B| > 1 and let a ∈ B. Now pick any

c ∈ B − {a} and d ∈ A− B. Let P̄i and P ′
i be such that τ(P̄i) = τ(P ′

i ) = a, r2(P̄i) = c and

r2(P
′
i ) = d. Clearly c, d and P̄i, P

′
i satisfy the requirements of Property T ′. Since P̄i and P ′

i

belong to the FPT domain, this domain satisfies Property T ′. Hence we have

Corollary 1 Aswal et al. (2003), Gibbard (1973), Satterthwaite (1975) . Let m ≥ 3. The

FPT and complete domains are dictatorial.
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4.2.2 Circular Domains

It will be convenient to write A = {a1, a2, .., am}. The idea is to write the alternatives

a1, a2, .., am on the circumference of a circle. There are two orders with aj as the first-ranked

alternative. Either move clockwise from aj so that aj+1 is the second-ranked alternative

and aj−1 is the worst alternative or move counter-clockwise from aj so that aj−1 is the

second-ranked alternative and aj+1 is the worst alternative. The construction is very similar

to single-peaked preferences with one critical difference: starting from any alternative, by

moving either “left” or “right”, one reaches a “neighbour” of the alternative again. Formally,

we have the following.

Definition 17 The Circular Domain DC consists of the following 2m orders:

{ajaj+1...ama1..aj−1, ajaj−1...a1am...aj+1, j = 1, ..., m}. Here am+1 is the alternative a1.

We illustrate this definition with an example.

Example 3 Let A = {a1, a2, a3, a4}. Then DC consists of the following eight orderings

(P1, P2, P3, P4, P5, P6, P7, P8):

P1 P2 P3 P4 P5 P6 P7 P8

a1 a1 a2 a2 a3 a3 a4 a4

a2 a4 a3 a1 a4 a2 a1 a3

a3 a3 a4 a4 a1 a1 a2 a2

a4 a2 a1 a3 a2 a4 a3 a1

Table 2: A Circular Domain

Corollary 2 Let m ≥ 3. The domain DC is dictatorial.

Proof : : Consider the orders Pi = ajaj+1...ama1..aj−1 and P ′
i = ajaj−1 ...a1am...aj+1 for some

j = 1, .., m and am+1 understood to being the alternative a1. Observe that rk(Pi) ∼ rk−1(Pi)

and rk(P
′
i ) ∼ rk−1(P

′
i ) for all k = 2, .., m. Hence DC satisfies Property T .

We now show that it satisfies Property T ′. Pick an arbitrary B ⊂ A with m > |B| > 1

and let aj ∈ B. Since {B, A− B} is a partition of points that lie on the circumference of a

circle, there must a pair of adjacent points which lie in different elements of the partition, i.e.

there exists k 6= j such that either ak ∈ B and ak+1 ∈ A− B or ak ∈ A− B and ak+1 ∈ A.

We have already seen that ak ∼ ak+1. Observe that in Pi, we have ak+1Piak while in P ′
i , we

have akP
′
iak+1. Hence Property T ′ is also satisfied. ¥

Our next result shows that the circular domain is a salient dictatorial domain. 3

3This result has been independently obtained by Shin Sato (Sato (2008)).
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Theorem 4 The circular domain is a minimal dictatorial domain. If D is a minimal dic-

tatorial domain, then |D| = 2m.

Proof : : Since DC is dictatorial and has a cardinality of 2m, we know that the cardinality

of a minimal dictatorial domain is no greater than 2m. We now show that there does not

exist a minimally rich dictatorial domain whose cardinality is strictly less than 2m. Suppose

such a domain D existed. Since D satisfies minimal richness, there must exist an alternative

a ∈ A and an order Pi ∈ D such that τ(Pi) = a and τ(P ′
i ) 6= a for all P ′

i ∈ D − {Pi}. Let

b = r2(Pi). Define the SCF f : DN → A as follows. For all P ′ ∈ DN , such that P ′
1 6= Pi,

f(P ′) = τ(P ′
1) and for all other profiles P̂ , f(P̂ ) = C({a, b}, P̂2). It is easy to verify that

f is strategy-proof, satisfies unanimity and is not dictatorial. Hence D is not a dictatorial

domain. ¥

Observation 3 Aswal et al. (2003) proved that if D was a minimal dictatorial domain,

then |D| ≤ 4m− 6. In this paper we prove a tight bound 2m which is, of course, strictly less

than 4m − 6 for m > 3. Note that for m = 3, the FPT, circular and complete domains all

coincide.

4.3 Single-Peaked Domains

These domains have been extensively studied (see for example Moulin (1980)). We are able

to apply our results to these domains.

Definition 18 Let > be a linear ordering over A. A preference ordering Pi is Single-Peaked

(with respect to >) if for all a, b ∈ A, [τ(Pi) > a > b or b > a > τ(Pi)] ⇒ aPib.

Alternatives are ordered, say on the real line. An ordering is single-peaked if alternative

a which lies “between” the peak of the ordering and another alternative b, is strictly preferred

to b. We will let DSP denote the set of all single-peaked preferences with respect to some

fixed order >.

Let a, b ∈ A and assume that a > b. We say that a and b are adjacent if there does not

exist c distinct from a and b such that a > c > b. Also let [a, b] denote the alternatives which

lie “between” a and b, i.e {c|a > c > b} if a > b and {c|b > c > a} if b > a. It is easy to

verify the following fact which we record as an Observation.

Observation 4 Let D ⊂ DSP . Then, for all a, b ∈ A, [a ∼ b] ⇒ [a and b are adjacent].

We will say that a domain is adjacency rich if the reverse implication also holds.

Definition 19 The domain D ⊂ DSP is adjacency rich if for all a, b ∈ A, [a and b are adjacent ]

⇒ [a ∼ b].
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We illustrate these concepts with an example.

Example 4 Let A = {a, b, c, d} and let a > b > c > d. Note that {a, b}, {b, c} and {c, d}
are adjacent. Let D = {P1, P2, P3, P4, P5, P6} where

P1 P2 P3 P4 P5 P6

a b b c c d

b a c d b c

c c a b a b

d d d a d a

Then D is an adjacency rich single-peaked domain.

Note that adjacency rich domains can be strict subsets of DSP . For instance in Example

4 above, the single-peaked orderings bcda and cbda are absent. In general |D| = 2m−1 while

the minimal adjacency rich domain has size 2m−2 + 2. Note also that the superset of an

adjacency rich domain is also adjacency rich. Hence DSP is adjacency rich.

Proposition 3 Assume n = 2. Then every adjacency rich domain D ⊂ DSP satisfies the

tops-only property.

Proof : . Suppose D be adjacency rich. Pick Pi ∈ D and a ∈ A − τ(Pi). Since Pi is single-

peaked, there exists b ∈ A such that a and b are adjacent and bPia. By adjacency richness,

a ∼ b so that D satisfies Property T . The result now follows by applying Theorem 1. ¥

We prove a weaker result in the case where there are at least three voters.

Proposition 4 Assume n ≥ 3. The domain DSP satisfies the tops-only property.

Proof : : Assume without loss of generality that A = {a1, a2, ..., aM} and that a1 > a2 > ... >

aM . We have seen that aj ∼ ak only if j and k are consecutive integers. Let Pi ∈ DSP and

let τ(Pi) = aj. Pick ak 6= aj. Let r ∈ [j, k]. Observe that for all single-peaked P ′
i for which

τ(P ′
i ) = aj, we must have arP

′
iak. Moreover, for any integer s /∈ [j, k], there exists a single-

peaked ordering P̄i such that τ(P̄i) = aj and akP̄ias. Hence B̄(Pi, ak) = {aj, aj+1, ..., ak−1, ak}
if k > j and B̄(Pi, ak) = {aj, aj−1, .., ak+1, ak} if j > k.

Suppose k > j. Pick as ∈ B̄(Pi, ak). The ordering P ′
i where

akP
′
iak−1...P

′
ias, .., P

′
ia1P

′
iak+1, ..., P

′
iaM is single-peaked. If j > k and as ∈ B̄(Pi, ak), we can

choose a single-peaked P ′
i such that

akP
′
iak+1...P

′
ias, .., P

′
iaMP ′

iak−1, ..., P
′
ia1. These observations establish thatDSP satisfies Prop-

erty T ∗. We now apply Theorem 2. ¥

Observation 5 There are single-peaked domains which are strictly contained in DSP which

also satisfy Property T ∗. An instance of this is the domain in Example 4.
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4.4 Generalized Single-Peaked Domains

The notion of single-peakedness has been extended by Nehring and Puppe (2007b),

Nehring and Puppe (2007a) to apply to sets of alternatives with a more general structure

than that of the real line. We follow their formulation here.

Definition 20 A Property Space is a pair (A,H) where H is a collection of subsets of A

satisfying

1. ∅ /∈ H

2. H ∈ H ⇒ (A−H) ∈ H

3. For all x 6= y, there exists H ∈ H such that x ∈ H and y /∈ H.

A Property Space (A,H) induces a ternary betweenness relation B ⊂ A3 according to

(a, b, c) ∈ B ⇔ [for all H ∈ H : {a, c} ⊆ H ⇒ b ∈ H].

Definition 21 Let (A,H) be a Property Space inducing the betweenness relation B. The

ordering Pi is Generalized Single-Peaked (GSP) if for all a, b ∈ A, (τ(Pi), a, b) ∈ B ⇒ aPib.

We can easily generalize the notion of adjacency richness to this setting. Thus a, b ∈ A

are adjacent if there does not exist c ∈ A such that (a, b, c) ∈ B. As in the case of single-

peaked preferences, [a ∼ b] ⇒ [a and b are adjacent]. An adjacency rich domain is a set of

GSP orderings where the converse implication also holds. We let DGSP denote the set of all

GSP orderings.

The next two results and their proofs are straightforward adaptations of their counter-

parts for single-peaked domains.

Proposition 5 Assume N = 2. Then every adjacency rich domain D ⊂ DGSP satisfies

Property T and hence the tops-only property.

Proposition 6 Assume N ≥ 3. The domain DGSP satisfies Property T ∗ and hence the

tops-only property.

Observation 6 Nehring and Puppe (2007b) and Nehring and Puppe (2007a) demonstrate

that a large number of models are covered by their abstract formulation of GSP preferences.

These include single-peaked preferences on a tree (Demange (1982)) and multi-dimensional

single-peakedness (Barberà et al. (1993)). Our results, Propositions 5 and 6, therefore cover

these models as well.
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4.5 Multi-dimensional Voting: Separable Preferences,

Universal Marginal Domains

In this subsection we consider models where agents vote over alternatives which are multi-

dimensional in nature, i.e the set of alternatives A ≡ A1 × .... × AM . The sets Aj, j =

1, .., M will be referred to as component sets. The case where Aj = {0, 1} was analyzed

in Barberà et al. (1993) and the general case in LeBreton and Sen (1999). The literature

surveyed in Sprumont (1995).

We shall write a typical element a ∈ A as a ≡ (a1, ..., aM) or (aQ, a−Q) where Q ⊂
{1, ..., M}. We shall consider separable preferences where it is possible to unambiguously

define preferences over each component set.

Definition 22 The ordering Pi is separable if for all Q ⊂ {1, ..., M}, and a, b, c, d ∈ A,

[(aQ, c−Q)Pi(bQ, c−Q) ⇒ [(aQ, d−Q)Pi(bQ, d−Q)].

We shall let DSEP denote the set of all separable preferences over A. For every Pi ∈ DSEP ,

let P j
i , j = 1, ..., M denote the preference ordering on the jth component set by Pi. We

shall refer to P j
i as the marginal ordering over j induced by Pi. For any D ⊂ DSEP , let

Dj = {P j
i |Pi ∈ D}. Finally let Pj denote the set of all preference orderings over component

j. Thus DSEPj = Pj.

Definition 23 The ordering Pi is additively representable if there exists functions uj :

Aj → <, j = 1, ..M such that for all a, b ∈ A, aPib if and only if
∑

j uj(aj) >
∑

j uj(bj).

Let DADD denote the set of all additively representable preferences. It is trivial to verify

that DADD ⊂ DSEP . It is also well-known that there exist separable preferences which are

not additively representable. 4

Proposition 7 Let D be a domain such that DADD ⊆ D ⊆ DSEP . Then D satisfies the

tops-only property.

Proof : : We will show that a domain D such that DADD ⊆ D ⊆ DSEP satisfies Property T ∗.
Pick Pi ∈ D, let b = τ(Pi) and a 6= b and let S = {k ∈ {1, ..,M} : ak = bk}. Let

H(Pi, a) = {c ∈ A|c = (bQ, a−Q) for some Q ⊃ S}. 5 We claim that B̄(Pi, a) = H(Pi, a).

Let P ′
i ∈ DSEP be such that τ(P ′

i ) = b. Separability implies that whenever S ⊂ Q,

we have (bQ, a−Q)P ′
i (aQ, a−Q). Hence H(Pi, a) ⊆ B̄(Pi, a). Now construct uj : Aj → < as

follows:

• uj(bj) = 1 for all j = 1, ..M .

4See for example, Fishburn (1970).
5 In the definition of the set H(Pi, a), we require Q to be a strict superset of S.
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• uj(cj) < γ for all j ∈ S and for all cj ∈ Aj − {bj} where 0 < γ < 1.

• uj(aj) = βj and uj(cj) < γ for all j ∈ M − S and for all cj ∈ Aj − {bj, aj} where

0 < γ < βj < 1.

Let β = minj∈M−S βj. Observe that
∑

j uj(aj) ≥ |Q|+β|M−Q| ≥ βM . Pick an arbitrary

c /∈ H(Pi, a). There must exist k ∈ {1, ..,M} such that ck 6= ak, bk. Therefore,
∑

j uj(cj) ≤
M − 1 + γ. By picking β such that β > M−1+γ

M
, we can ensure that

∑
j uj(aj) >

∑
j uj(cj).

Let P ′
i ∈ DADD be the ordering generated by the functions uj, j = 1, .., M . Observe that

τ(P ′
j) = b and aP ′

i c. Hence c /∈ B̄(Pi, a), i.e. B̄(Pi, a) = H(Pi, a).

Let x ∈ H(Pi, a), i.e. x = (aS, bQ−S, a−Q) for some S ⊂ Q. Now construct uj : Aj → <
as follows:

• uj(aj) = 1 for all j = 1, ..M .

• uj(cj) < γ for all j ∈ S ∪ (M −Q) and for all cj ∈ Aj − {aj} where 0 < γ < 1.

• uj(bj) = βj and uj(cj) < γ for all j ∈ Q − S and for all cj ∈ Aj − {bj, aj} where

0 < γ < βj < 1.

Once again let β = minj∈Q−S βj. Observe that
∑

j uj(xj) ≥ |M |+|Q−S|+β|Q−S| ≥ βM .

Pick an arbitrary c /∈ H(Pi, a). There must exist k ∈ {1, .., M} such that ck 6= ak, bk.

Therefore,
∑

j uj(cj) ≤ M − 1 + γ. By picking β such that β > M−1+γ
M

, we can ensure

that
∑

j uj(xj) >
∑

j uj(cj). Let P ′
i ∈ DADD be the ordering generated by the functions uj,

j = 1, .., M . Observe that τ(P ′
j) = a and xP ′

i c for all c /∈ B̄(Pi, a) i.e. xP̄i(A−{a}−B̄(Pi, a)).

Since B̄(Pi, a) ⊂ B(Pi, a), we have xP̄i(A−{a}−B(Pi, a)) or xP̄iW (Pi, a). Hence D satisfies

Property T ∗. We now apply Theorem 2. ¥

4.6 Constrained Voting

A class of problems that has received considerable attention in the literature (Barberà et al.

(1997) Barberà et al. (2005), Serizawa (1996), Aswal et al. (2003), Ozyurt and Sanver (2006)

and Svensson and Torstensson (2008)) is that of constrained voting. There is a basic set of

feasible alternatives A which has a product structure i.e., A = A1 × A2 × ... × AM where

Aj, j = 1, ...M are the component sets. In Serizawa (1996) and Svensson and Torstensson

(2008), the component set Aj denotes the level of public good j with the typical assumption

that |Aj| ≥ 3. On the other hand, Barberà et al. (1997) Barberà et al. (2005), Aswal et al.

(2003), Ozyurt and Sanver (2008) consider models of voting over subsets of candidates. Thus

{1, ..., M} is the possible set of candidates and Aj = {0, 1}. Every a ∈ A, uniquely represents
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a subset of A with aj = 1 and aj = 0 signifying that j belongs and does not belong

respectively to the subset represented by a.

The set of feasible alternatives is B ⊂ A. In the public goods case, these restrictions may

reflect resource constraints (Serizawa (1996)) and in the voting over subsets of candidates,

restrictions such as that at least k candidates must be elected, there must at least as many

women elected as men Barberà et al. (2005) and so on.

The preferences of each voter is represented by a separable preference Pi over A. Let

DSEP denote the set of all separable preferences over A. For all Pi ∈ DSEP , let PB
i denote

the preferences over B induced by Pi, i.e. for all a, b ∈ B, aPB
i b if and only if aPib. As

usual, we will let rk(P
B
i ) and τ(PB

i ) denote respectively the kth ranked and first ranked

alternatives in PB
i . The set of preferences over B induced by separable preferences over A

will be denoted by DSEP (B).

Definition 24 Let D(B) ⊂ DSEP (B). A constrained SCF f is a mapping f : (D(B))n →
B.

Preferences over the set B are generated by separable preferences over the set A. We

could alternatively define a constrained SCF f as a mappping f : (DSEP )n → B. However,

it is important to note that this distinction is irrelevant for strategy-proof constrained SCFs.

Thus if f is strategy-proof and P, P̄ ∈ (DSEP )n are such that PB
i = P̄B

i for all i, then

f(P ) = f(P̄ ). This is an immediate consequence of the well-known fact that the value of a

strategy-proof SCF f at a profile can depend only on individual preferences over alternatives

in the range of f .

Definition 25 The constrained SCF f satisfies the tops-only property if for all P, P̄ ∈
D(B)n such that τ(Pi, B) = τ(P̄i, B) for all i ∈ N , we have f(P ) = f(P̄ ).

Observation 7 We are assuming that constrained SCFs f under consideration satisfy the

unanimity property with respect to the feasible alternatives, i.e. for elements of the set B.

An immediate consequence of this assumption is that Range f = B.

We will distinguish between two kinds of constrained voting models which give very

different results. In one class of models, studied for instance in Barberà et al. (1997), each

voters’ unconstrained maximal element is assumed to be feasible. Thus PB
i ∈ D ⊂ DSEP (B)

implies that τ(Pi) ∈ B where Pi ∈ DSEP induces PB
i . For instance if A = {11, 10, 01, 00}, and

B = {11, 10, 00}, then the ordering PB
i where 11PB

i 00PB
i 10 (or more compactly, 11, 00, 10)

is inadmissible because PB
i can be induced only by the ordering Pi over A where 01, 11, 00, 10

and τ(Pi) = 01 /∈ B. We will call this model, the tops-feasible model. The other model where

no restrictions are made on the feasibility of the top alternatives , will be referred to as the

unrestricted-tops model. This model has been studied in Barberà et al. (1997), Aswal et al.

(2003), Ozyurt and Sanver (2008) and Svensson and Torstensson (2008).
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The structure of strategy-proof SCFs in these two models can be quite different. In

the feasible-tops model, we show that Property T ∗ holds. In the unrestricted-tops model,

we provide an example to show that Property T ∗ does not hold. Since the domain in the

example can be shown to be dictatorial, the example demonstrates that Property T ∗ is not

necessary for tops-onlyness.

4.6.1 The Tops-Feasible Model

As indicated earlier, we assume that preferences over the feasible set B are generated by

separable preferences over the set B subject to the restriction that the peaks of all admissible

orderings are feasible. The domain that we will examine is the largest one that can be

generated with these restrictions. For instance, consider the example introduced earlier

where A = {11, 10, 01, 00} and B = {11, 10, 00}. The domain we will consider consists of

the following orderings

{(11, 10, 00), (10, 11, 00), (10, 00, 11), (00, 10, 11)}.

Generally,

D̄(B) = {PB
i ∈ DSEP (B)|τ(PB

i ) ∈ B}

Proposition 8 The domain D̄(B) has the tops-only property.

Proof : : We will show that D̄(B) satisfies Property T ∗.
Let PB

i ∈ D̄(B), τ(PB
i ) = b ∈ B and a ∈ B with a 6= b. Let Pi ∈ DSEP induce PB

i . 6

Clearly B(PB
i , a) ⊆ B(Pi, a). Hence B̄(PB

i , a) ⊆ B̄(Pi, a). Now pick x ∈ B̄(PB
i , a). Since

x ∈ B̄(Pi, a), we can apply Proposition 7 to conclude that there exists P̄i ∈ DSEP such

that τ(P̄i) = a and xP̄iW (Pi, a). Let P̄i induce P̄B
i . Obviously τ(P̄B

i ) = a. Also since

W (P̄B
i , a) ⊂ W (P̄i, a) we have xPB

i W (PB
i , a). Hence D̄(B) satisfies Property T ∗. ¥

Observation 8 In the example where A = {11, 10, 01, 00} and B = {11, 10, 00} the domain

D̄(B) is single-peaked with respect to the ordering > where 11 > 10 > 00. 7 There is

therefore a rich class of non-dictatorial strategy-proof SCFs over this domain such as the

median voter rule. However all these strategy-proof SCFs satisfy tops-onlyness.

6Of course, Pi need not be unique.
7Also with respect to the ordering > where 00 > 10 > 11.

22



4.6.2 The Unrestricted-Tops Model

We now consider the case where the peaks of admissible preferences need not be feasible.

This case is harder to deal with than the unrestricted-tops case. We show that DSEP (B)

may violate Property T ∗.

Example 5 Let A = A1×A2×A3 where A = {0, 1}× {0, 1}× {0, 1}. Let B = A−{011}.
Let Pi be the ordering

((011), (111), (001), (010), (000), (101), (110), (100))

It can be verified that Pi ∈ DSEP . Clearly τ(PB
i ) = (111). Let a = (000). Note that

for any P ′
i ∈ DSEP such that either τ(P ′

i ) = (111) or τ(P ′
i ) = (011) and r2(P

′
i ) = (111),

we must have (001)P ′
i (000) and (010)P ′

i (000). Hence B̄(PB
i , a) = {111, 010, 001}. If Con-

dition T ∗ is to be satisfied, there must exist P̄B
i ∈ DSEP such that τ(P̄B

i ) = (000) and

(111)P̄B
i W (Pi, (000)). Suppose that such a P̄B

i exists. There are two cases to consider.

Suppose first that τ(P̄i) = (000). Then (111) is ranked last in P̄i. Hence (101)P̄B
i (111) so

that the requirement that (111)P̄B
i W (Pi, (000)) is violated. Suppose that τ(P̄i) /∈ B, i.e

τ(P̄i) = (011). Then separability of P̄i implies (010)P̄i(000) so that the requirement that

τ(P̄B
i ) = (000) is violated.

The results in Aswal et al. (2003) can be used to show that domain in Example 5 is

dictatorial. Therefore the example demonstrates that Property T ∗ is not necessary for tops-

onlyness.

5 Non-Minimally Rich Domains

In this section we relax the minimal richness assumption. There are several well-known

domains where minimal richness fails, for instance, in models where sets are being ranked

according to an expected utility criterion (see Barberà et al. (2001)).

The general results obtained earlier cannot be easily adapted to this setting. To begin

with, the notion of connectedness between two alternatives is now severely restricted because

it cannot be applied to alternatives which are not ranked first in some admissible ordering.

Consequently, Property T can never be satisfied in these models so that Theorem 1 can

never be applied. Can Property T ∗ be generalized in order to cover alternatives which are

in the range of the SCF but which are never first-ranked in any admissible ordering? This

appears to be difficult without reference to the specific structure of option sets. Suppose

a ∈ Oi(P−i) for some admissible n − 1 profile P−i and let (P ′
j , P−i,j) be another admissible

n − 1 profile which is tops equivalent to P−i. Steps 1 and 2 in the proof of Theorem 2 go

through as before so that we can conclude that if a ∈ Oi(P−i) − Oi((P
′
j , P−i,j), then there
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exists x∗ ∈ Oi(P−i) ∩ O1((P
′
j , P−i)) where x∗ ∈ B̄(Pj, a). Property T ∗ requires the existence

of an ordering where a is ranked first and x∗ is preferred to all alternatives that a was

preferred to under Pj. Since a ∈ Oi(P−i), we know that there exists an admissible Pi such

that f(Pi, P−i) = a. In this ordering Pi, the first ranked alternative, say b clearly does not

belong to Oi(P−i). So, if we could postulate the existence of an ordering Pi where b is the first

ranked, a is the highest ranked amongst all alternatives in Oi(P−i) and x∗ is preferred to all

alternatives that a was better than under Pj, then we would have the required counterpart

to Property T ∗. Unfortunately, the construction of such an ordering requires knowledge of

Oi(P−i) (for instance, how do we identify b?) which renders the entire approach unworkable.

In view of these difficulties, we proceed as follows. We show that partial results relating

to the properties of alternatives which can be ranked first, do carry over. Moreover, using

these partial results, general tops-onlyness results can be obtained in specific models using

the appropriate structure of option sets.

Fix a domain D. Let A0 ⊂ A denote the set of alternatives with the property that for

all a ∈ A0 there exists Pi ∈ D such that τ(Pi) = a. Clearly A0 6= ∅ but it could be the

case that A0 is a strict subset of A. We shall assume that SCFs under consideration satisfy

unanimity which is defined exactly as before. The definition of tops-onlyness also carries

over without any changes or qualifications. The following definitions are however, specific to

this environment.

Definition 26 The SCF f : Dn → A satisfies partial tops-onlyness if, for all tops-equivalent

profiles P, P ′ ∈ Dn, f(P ) ∈ A0 ⇒ [f(P ) = f(P ′)]. The domain D satisfies partial tops-

onlyness if every strategy-proof and unanimous SCF f : Dn → A satisfies partial tops-

onlyness.

In other words, a SCF is partially tops-only if it satisfies tops-onlyness with respect to

the alternatives in A0. A domain satisfies partial tops-onlyness if every strategy-proof and

unanimous SCF defined over this domain satisfies partial tops-onlyness. We will show that

Property T ∗ can be modified in a natural way so that Theorem 2 can be replicated in order

to obtain a result on partial tops-onlyness. We will then show that in a variety of specific

domains, the partial tops-onlyness result can be extended to obtain results on tops-onlyness.

As before, for all Pi ∈ D and a ∈ A− τ(Pi), let B(Pi, a) = {x ∈ A|xPia} and W (Pi, a) =

{x ∈ A|aPix}. Also let B̄(Pi, a) = {x ∈ A|x ∈ B(P ′
i , a) for all P ′

i such that τ(Pi) = τ(P ′
i )}.

Definition 27 Fix a domain D. Let a ∈ A0 and Pi ∈ D be such that a 6= τ(Pi). Then a is

connected for Pi if for all x ∈ B̄(Pi, a) there exists P̄i such that τ(P̄i) = a and xP̄iW (Pi, a).

Moreover D satisfies Property NRT ∗ if for all Pi ∈ D and a ∈ A0 − τ(Pi), a is connected

for Pi.

The requirement for an alternative to be connected in Definition 27 is exactly the same

as that in Definition 9. However Property NRT ∗ only requires alternatives in A0 to be
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P1 P2

a1 a1

a12 a13

a2 a12

a23 a2

a13 a23

a3 a3

Table 3: Examples of In-Between Preferences

connected. There is a reason for this: observe that alternatives in A−A0 cannot be connected

because the definition of connection requires the existence of an admissible ordering where

these orderings are ranked first. Observe that in terms of option sets, a SCF f satisfies

partial tops-onlyness if for P−i, P
′
−i ∈ Dn−1, we have Oi(P−i) ∩A0 = Oi(P

′
−i) ∩A0 whenever

P−i and P ′
−i are tops-equivalent.

Theorem 5 Let D be a domain satisfying Property NRT ∗. Then, D satisfies partial tops-

onlyness.

The proof of Theorem 5 is straightforward adaptation of the proof of Theorem 2 and is

omitted. In the examples below we show that Theorem 5 can be used to prove tops-onlyness.

5.1 In-Between Preferences

In this model, the set of alternatives A consists of singletons and pairs. There are m singletons

{a1, .., am} and m(m−1)
2

pairs, {ajk} where j, k ∈ {1, ..., m}. A singleton aj can be thought

of as a “pure” outcome and a pair ajk as a “compromise” between singletons aj and ak. One

possible interpretation (though not the only one) is that a compromise ajk is an even-chance

lottery between aj and ak.

We will assume that admissible preferences Pi satisfy the following restriction which we

call the “in-betweenness” restriction: for all j, k ∈ {1, .., m} with j 6= k, either ajPiajkPiak

holds or akPiajkPiaj holds. In other words the compromise ajk must lie“in-between”the pure

outcomes aj and ak. This will be satisfied if a compromise is an even-chance lottery and

orderings are based on an expected utility calculation. More generally, it will be satisfied if

preferences satisfy the axiom of “Averaging” discussed in Fishburn (1970) and Gravel et al.

(2008). An immediate consequence of in-betweenness is that only singletons can be ranked

first, i.e. A0 = {a1, a2, .., am}. For convenience, we denote the set of pairs by A1 so that

A = A0 ∪ A1. In Table 3, P1 and P2 are examples of orderings satisfying in-betweenness

when A0 = {a1, a2, a3}.
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Let DIB denote the set of all orderings satisfying in-betweenness. We show that this

domain satisfies tops-onlyness. We show this by first showing that it satisfies partial tops-

onlyness by virtue of satisfying Property NRT ∗ and then extending the result.

Proposition 9 The domain DIB satisfies the tops-onlyness property.

Proof : Our first observation is that if |A0| = 2, then there is a unique ordering associated

with every singleton so that tops-onlyness is trivially satisfied. Assume therefore that |A0| ≥
3. We will first show that DIB satisfies the partial tops-onlyness property by showing that it

satisfies Property NRT ∗ and applying Theorem 5. We then use this result to demonstrate

tops-onlyness.

Let Pi ∈ DIB, aj = τ(Pi) and ak ∈ A0−{aj}. Since there exists an in-between preference

ordering where aj, ajk and ak are ranked first, second and third respectively, it follows

B̄(Pi, ak) ⊂ {aj, ajk}. Since every ordering satisfying in-betweenness with aj as the maximal

alternative must rank ajk above ak, it follows that {aj, ajk} = B̄(Pi, ak). Let P̄i ∈ DIB be

such that ak, ajk and aj are ranked first, second and third respectively. Since xP̄iW (Pi, ak)

for all x ∈ B̄(Pi, ak), Property NRT ∗ is satisfied and partial tops-onlyness follows from

Theorem 5.

Let f : (DIB)n → A be a strategy-proof satisfying unanimity. Pick i ∈ N . We will

now show that Oi(P−i) = Oi(P
′
−i) whenever P−i and P ′

−i are tops-equivalent. Note that this

implies that f is tops-only and moreover the proof of this does not require minimal richness

(see Proposition 1). We shall closely follow the arguments in the proof of Theorem 2. Let

aj,k ∈ Oi(P−i), t ∈ N − {i} and suppose τ(Pt) = at. Let P ′
t be such that τ(P ′

t) = at but

ajk /∈ Oi((P
′
t , P−{i,t})). Following Steps 1 and 2 in the proof of Theorem 2 which make no use

of either minimal richness or Property T ∗, we conclude that there exists x∗ ∈ B̄(Pt, ajk) which

belongs to both Oi((Pt, P−{i,t})) and Oi((P
′
t , P−{i,t})). By the in-betweenness restriction,

exactly one of ajPtajkPtak or akPtajkaj must hold. Assume without loss of generality that

the former holds. Using the same argument as in the previous paragraph, it is easy to verify

that B̄(Pt, ajk) = {at, ajt, aj}.
Since ajk ∈ Oi((Pt, P−{i,t})), there must exist Pi ∈ DIB such that f(Pi, Pt, P−{i,t}) = ajk.

Suppose ajPiajkPiak. Let P ′
i ∈ DIB be such that aj, ajk, ajt and at are ranked first, second,

third and fourth respectively. Since f is strategy-proof, it follows from standard arguments

that f(P ′
i , Pt, P−{i,t}) = ajk and in addition, that aj /∈ Oi(Pt, P−{i,t}). Since f satisfies partial

tops-onlyness, aj /∈ Oi(P
′
t , P−{i,t}). We know the following: (i) ajk /∈ Oi(P

′
t , P−{i,t}) by

hypothesis (ii) there exists x∗ ∈ {at, ajt, aj} such that x∗ ∈ Oi((P
′
t , P{i,t})). Observe that (i)

and (ii) imply f(P ′
i , P

′
t , P−{i,t}) ∈ {at, aj,t}. Since both at and ajt are preferred by t to aj,k

under Pt , it follows that t will manipulate at (P ′
i , Pt, P−{i,t}) via P ′

t .

Now suppose akPiajkPiaj but ajk /∈ Oi((P
′
t , P−{i,t})). Let P

′′
i ∈ DIB be such that

ak, ajk, ajt and at are ranked first, second third and fourth respectively. Once again,
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f(P
′′
i , Pt, P−{i,t}) = ajk and ak /∈ Oi(Pt, P−{i,t}). From the partial tops-onlyness of f , we

have ak /∈ Oi(P
′
t , P−{i,t}). Hence f(P

′′
i , P ′

t , P−{i,t}) ∈ {at, ajt, aj}. Since t prefers at, ajt and

aj to ajk under Pt, it follows that she will manipulate at (P
′′
i , Pt, P−{i,t}) via P ′

t . Therefore

Oi(Pt, P−{i,t})) = Oi(P
′
t , P−{i,t})). Applying this argument repeatedly for different voters, we

conclude that Oi(P−i) = Oi(P
′
−i) and f satisfies tops-onlyness. ¥

Observation 9 The tops-onlyness property can be used to show quite easily that DIB is

in fact, dictatorial if |A0| ≥ 3. We merely outline the argument here. We first show that a

strategy-proof f satisfying unanimity cannot have any pairs in its range. Suppose this was

false and there existed a profile P and a pair ajk such that f(P ) = ajk. By the tops-onlyness

property, we can assume without loss of generality that ajk is in the fact, the second ranked

alternative from the bottom for all voters. Now pick ar distinct from aj and ak and let P ′

be a profile where every voter’s first-ranked alternative is ar, and the position of ajk and the

bottom ranked alternative remain the same as in P . A standard argument can be used to

show that f(P ′) = ajk. However unanimity requires f(P ′) = ar. Hence Range f = A0. Since

the value of a strategy-proof SCF depends only on voters’ rankings over the range of the SCF,

it follows that f can depend only on rankings over A0. Since these rankings are unrestricted,

the Gibbard-Satterthwaite Theorem can be applied to show that f is dictatorial.

5.2 Kelly’s domain

Consider the following domain denoted by DK . Let A = {a1, a2, a3, a4, a5, a6, a7}. Then DK

is the largest domain of orderings satisfying the restrictions below.

• a4 lies between a1 and a3

• a5 lies between a1 and a3

• a6 lies between a2 and a3

• a7 is neither first nor last.

Kelly (1989) conjectured that there does not exist a strategy-proof Pareto-efficient, non-

dictatorial SCF defined over DK with range including the alternatives, a1, a2 and a3.

Kim and Roush (1989) proved a stronger version of this conjecture showing that the re-

quirement of Pareto-efficiency is redundant. Here we show that the arguments in the proof

of Proposition 9 extend easily to this case.

Proposition 10 The domain DK satisfies the tops-only property.
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Proof : In this case A0 = {a1, a2, a3}. Let f be a strategy-proof SCF with {a1, a2, a3} ⊆
Range f . It follows from well-known arguments that f satisfies unanimity.

Identifying the outcomes a1, a2 and a3 as singletons and the alternatives a4 and a5 and

a6 as pairs, the arguments in the proof of Proposition 9 extend in a straightforward manner

to enable us to conclude that f satisfies top-onlyness with respect to the alternatives, a1,

a2, a3, a4, a5 and a6. In addition the arguments in Observation 9 also extend in identical

fashion to allow us to conclude that a4, a5, a6 /∈ Range f .

We now show that the tops-only property also holds with respect to a7. Suppose that

it does not hold, i.e. there exists i, t ∈ N and tops-equivalent profiles P−i, (P
′
t , P−{i,t}) ∈

(DK)n−1 such that a7 ∈ Oi(P−i) − Oi((P
′
t , P−{i,t})). Once again, applying Steps 1 and 2

in the proof of Theorem 2, it follows that there exists x∗ ∈ Oi(P−i) ∩ Oi((P
′
t , P−{i,t})) and

x∗ ∈ B̄(Pt, a7). Assume without loss of generality that τ(Pt) = a1. It is easy to check that

x∗ = a1. Since a7 ∈ Oi(P−i), there exists Pi ∈ DK , such that f(Pi, P−i) = a7. Notice that

τ(Pi) 6= a1 because a1 ∈ Oi(P−i). Assume τ(Pi) = aj where j = {2, 3}. Observe also that

aj /∈ Oi(P−i) (because f(Pi, P−i) = a7). By partial tops-onlyness aj /∈ Oi((P
′
t , P−{i,t}).

Moreover we can assume without loss of generality that a7 and a1 are ranked second and

third respectively amongst the alternatives {a1, a2, a3, a7} in Pi. Then f(P ′
t , Pi, P−{i,t}) = a1

(since the alternatives a4, a5 and a6 are not in Range f). Since a1Pta7, voter t manipulates

at (Pt, Pi, P−{i,t}) via P ′
t . Hence Oi(P−i) = Oi((P

′
t , P−{i,t}) and f satisfies the tops-only

property. ¥

5.3 Single-Dipped Preferences

These domains have been studied in, for instance Peremans and Storcken (1997) and

Klaus et al. (1997). It will be convenient to represent the set of alternatives by A =

{a1, ..., aM}. Let > be the linear order am > aM−1... > a1.

Definition 28 The ordering Pi is said to be Single-Dipped (with respect to >)if there exists

an alternative min(Pi) such that for all a, b ∈ A, [min(Pi) > b > a or a > b > min(Pi)] ⇒
aPib.

Thus the alternative min(Pi) is the worst element according to Pi and the further an

alternative is from min(Pi), the better it is. Let DSD denote the set of all single-dipped

preferences with respect to Pi.

Proposition 11 The domain DSD satisfies partial tops-onlyness.

Proof : : Observe that A0 = {a1, am}. We first show that DSD satisfies partial tops-onlyness.

Let Pi ∈ DSD and assume without loss of generality that τ(Pi) = a1. Since there exists a
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single-dipped ordering where a1 and am are ranked first and second respectively, it follows

that B̄(Pi, am) = {a1}. Since there exists a single-dipped ordering where am is first and a1

second, Property NRT ∗ is satisfied and DSD satisfies partial tops-onlyness. ¥

Observation 10 It is possible to show tops-onlyness in this model but we omit the details.

5.4 Preferences over sets derived from the expected utility

hypothesis

We consider the model of ranking all subsets of a finite set studied in Barberà et al. (2001),

Benoit (2002), Ching and L.Zhou (2002), Duggan and Schwartz (2000) and Ozyurt and Sanver

(2006). Let A0 = {a1, .., am} be the set of all singletons and let A denote the set of all non-

empty subsets of A0. Barberà et al. (2001) introduce the following restrictions on preference

orderings over A.

Definition 29 An assessment λ is a function λ : A0 → [0, 1] such that λ(aj) > 0 for all

aj > 0 and
∑

aj∈A0
λ(aj) = 1.

Definition 30 The ordering Pi is conditionally expected utility consistent (CEUC) if there

exists a utility function vi : A0 → < and an assessment λi such that, for all X, Y ∈ A

XPiY ⇔ ∑
aj∈X vi(aj)(

λi(aj)∑
ak∈X λi(ak)

) >
∑

aj∈Y vi(aj)(
λi(aj)∑

ak∈Y λi(ak)
)

Let DCEUC denote the set of all conditionally expected utility consistent utility orderings.

A closely related domain is the domain of all uniform expected utility consistent preferences

DUEU preferences.

Definition 31 The ordering Pi is uniform expected utility consistent (UEU) if there exists

a utility function vi : A0 → < such that, for all X,Y ∈ A

XPiY ⇔ ∑
aj∈X vi(aj)(

1
|X|) >

∑
aj∈Y vi(aj)(

1
|Y |)

Barberà et al. (2001) characterize strategy-proof SCFs over these domains and

Ozyurt and Sanver (2006) refine and extend these results. In particular, Barberà et al.

(2001) show that the domain DCEUC is dictatorial while DUEU is bi-dictatorial, i.e. both

domains satisfy the tops-only property. We show below that it is easy to verify that the

domains satisfy Property NRT ∗ and therefore satisfy partial tops-onlyness. Unlike the pre-

vious three examples, it is considerably more tedious to verify that tops-onlyness is satisfied.

We therefore do not undertake to demonstrate the more general tops-only property.
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Proposition 12 The domains DCEUC and DUEU satisfy partial tops-onlyness.

Proof : Let Pi belong to either DCEUC or DUEU and suppose τ(Pi) = aj. Pick ak 6= aj.

Note that by choosing a utility function vi where vj(aj) = 1 and vj(ak) is very close to

1, we can generate a P ′
i which belongs to both DCEUC and DUEU such that aj, {aj, ak}

and ak are ranked first, second and third respectively. Hence B̄(Pi, aj) = {aj, {aj, ak}}.
By an analogous argument, we can find P̄i belonging to both DCEUC and DUEU where ak,

{aj, ak} and aj are ranked first, second and third respectively. Thus x∗P̄iW (Pi, ak) for all

x∗ ∈ P̄ (Pi, a). Thus, Property NRT ∗ is satisfied and DCEUC and DUEU both satisfy partial

tops-onlyness. ¥

6 Conclusion

We have investigated the structure of domains which imply the tops-onlyness property. A

general characterization of this property poses difficulties which appear to be insurmountable.

We provide some sufficient conditions and are able to show that they apply widely.

Several questions remain. The most obvious is whether Property T is sufficient in the

general case. Is it possible to construct a domain which is tops-only for two voters and not

for more than three?
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