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Abstract:  Recent theoretical work has revealed a direct connection between asset return volatility 
forecastability and asset return sign forecastability. This suggests that the pervasive volatility 
forecastability in equity returns could, via induced sign forecastability, be used to produce direction-of-
change forecasts useful for market timing. We attempt to do so in an international sample of developed 
equity markets, with some success, as assessed by formal probability forecast scoring rules such as the 
Brier score. An important ingredient is our conditioning not only on conditional mean and variance 
information, but also conditional skewness and kurtosis information, when forming direction-of-change 
forecasts.  
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1.  Introduction 

Recent work by Christoffersen and Diebold (2004) has revealed a direct connection between asset 

return volatility dependence and asset return sign dependence (and hence sign forecastability). This 

suggests that the pervasive volatility dependence in equity returns could, via induced sign dependence, be 

used to produce direction-of-change forecasts useful for market timing. 

 To see this, let tR  be a series of returns, and tΩ  be the information set available at time t . 

Pr[ 0]tR >  is the probability of a positive return at time t . The conditional mean and variance are 

denoted, respectively, as 1| 1E[ | ]t t t tRμ + += Ω  and 2
1| 1Var[ | ]t t t tRσ + += Ω . The return series is said to 

display conditional mean predictability if 1|t tμ +  varies with tΩ ; conditional variance predictability is 

defined similarly. If Pr[ 0]tR >  exhibits conditional dependence, i.e., 1Pr[ 0 | ]t tR + > Ω  varies with tΩ , 

then we say the return series is sign predictable (or the price series is direction-of-change predictable). 

For clearer exposition, and to emphasize the role of volatility in return sign predictability, 

suppose that there is no conditional mean predictability in returns, so 1|t tμ μ+ =  for all t. In contrast, 

suppose that 2
1|t tσ +  varies with  t  in a predictable manner, in keeping with the huge literature on volatility 

predictability reviewed in Andersen, Bollerslev, Christoffersen and Diebold (2005). Denoting 2( , )D μ σ  

as a generic distribution dependent only on its mean μ  and variance 2σ , assume 

2
1 1|| ~ ( , )t t t tR D μ σ+ +Ω  

Then the conditional probability of positive return is 

 

 

 (1) 
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where F is the distribution function of the “standardized” return 1 1|( ) /t t tR μ σ+ +− . If conditional volatility 

is predictable, then the sign of the return is predictable even if conditional mean is unpredictable, 

provided 0μ ≠ .  

In practice, interaction between mean and volatility can weaken or strengthen the link between 

conditional volatility predictability and return sign predictability. For instance, time-variation in 

conditional means of the sort documented in recent work by Brandt and Kang (2004) and Lettau and 

Ludvigson (2005) would strengthen our results. Interaction between volatility and higher-ordered 

conditional moments can similarly affect the potency of conditional volatility as a predictor of return 

signs.  

In this paper, we use  
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to explore the sign predictability of one-, two-, and three-month returns in twenty stock markets, in which 

we examine out-of-sample predictive performance. We also use an extended version of (2) that explicitly 

considers the interaction between volatility and higher-ordered conditional moments. We estimate the 

parameters of the models recursively, and we evaluate the performance of sign probability forecasts. We 

proceed as follows. In Section 2, we discuss our data and its use for the construction of volatility 

forecasts. In Section 3, we discuss our direction-of-change forecasting models and evaluation methods. In 

Section 4 we present our empirical results, and in Section 5 we conclude.  



 4 
 

2. Data and Volatility Forecasts 

 Estimates and forecasts of realized volatility are central to our analysis; for background see 

Andersen, Bollerslev, Diebold and Labys (2003) and Andersen, Bollerslev, Christoffersen and Diebold 

(2005). Daily values for the period 1980:01 through 2004:06 of the MSCI index for Australia, Austria, 

Belgium, Canada, Denmark, France, Germany, Hong Kong, Italy, Japan, Netherlands, Norway, 

Singapore, Sweden, Switzerland, UK, USA, as well as MSCI Europe, Far East, and World indexes, were 

collected from Datastream. From these, we constructed one-, two-, and three-month returns and realized 

volatility. The latter is computed as the sum of squared daily returns within each one-, two-, and three-

month period. We use data from 1980:01 to 1993:12 as the starting estimation sample, which will be 

recursively expanded as more data becomes available. We reserve the period 1994:01 to 2004:06 for our 

forecasting application.  

 Table 1 summarizes some descriptive statistics of the return and the log of the square root of 

realized volatility (hereafter “log realized volatility”) for the two markets. All markets have low positive 

mean returns for the period. With a few exceptions, returns have negative skewness and are leptokurtic at 

all three frequencies. The p-values of the Jarque-Bera statistics indicate non-normality of all returns series 

except Denmark at all frequencies, and Japan, Sweden, and Far East for two-month returns. Log realized 

volatility is positively skewed in all except Austria, Denmark, and Japan, and are slightly leptokurtic in 

most markets. As with the returns series, the p-values of the Jarque-Bera statistics indicate non-normality 

of most of the volatility series, the main exceptions being Austria, Denmark, Japan, and Far East. 

 Figure 1 presents the plots of the log realized volatilities for three of the twenty markets, namely 

Hong Kong, UK, and US. There appears to be some clustering of return volatility. Predictability of 
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volatility is indicated by the corresponding correlograms. As we move from the monthly frequency to the 

quarterly frequency, the autocorrelations diminish, but still indicate predictability. These comments 

extend to the other seventeen series. The correlograms (none of which are reported here) of the return 

series of the twenty indexes show that they are all serially uncorrelated.  

Our method for forecasting the probability of positive returns will require forecasts of volatility, 

which we discuss here. We use the data from 1980:01 through 1993:12 as the base estimation sample. 

Out-of-sample one-step ahead forecasts are generated for the period 1994:01 through 2004:06, with 

recursive updating of parameter estimates, i.e., a volatility forecast for period 1t +  made at time t  will 

use a model estimated over the period 1980:1 to t . In addition, we also choose our models recursively: at 

each period we select ARMA models for log-volatility by minimizing either the AIC or the SIC.  

Broadly speaking, both criteria tend to choose AR(1) and ARMA(1,1) models, with SIC favoring 

the former, especially at the quarterly frequency, and AIC favoring the latter, particular at the monthly 

frequency. In Figure 2 we display the volatility forecasts (with actual log realized volatilities included for 

comparison) for the Hong Kong, UK, and US markets. Both the forecasts generated by the AIC and the 

SIC criteria produce fairly similar forecasts, and both track actual log realized volatility fairly reasonably. 

This is also true for the other seventeen markets. The ratios of the mean square prediction errors (MSPEs) 

to the sample variance of log realized volatility are given in Table 2. For all markets, the performance of 

the AIC and SIC models are very similar, and no one criterion outperforms the other systematically. More 

than half of all the ratios reported are 0.6 or less, so the forecasts capture a substantial amount of the 

variation in actual log realized volatility. Because the probability forecasts generated by both criteria, and 



 6 
 

the corresponding evaluation results, are very similar, we will report results only for the models selected 

by the AIC. 

A comment on our notation: throughout the paper we use ˆtσ  to represent the square root of 

realized volatility. The symbol 1|ˆ t tσ +  will represent the period  t  forecast of the square root of period  

t + 1 realized volatility. Note also that our volatility forecasting models use (and forecast) the log of these 

objects, so that 1|ˆ t tσ +  actually represents the exponent of the forecasts of (log) realized volatility. Finally, 

for simplicity of notation, we will also write 1|Pr[ 0]t tR + >  for 1Pr[ 0 | ]t tR + > Ω . 

3.  Forecasting Models and Evaluation Methods 

Forecasting Models 

We will evaluate the forecasting performance of two sets of forecasts, and compare their 

performance against forecasts from a baseline model. Our baseline forecasts are generated using the 

empirical cdf of the tR  using data from the beginning of our sample period right up to the time the 

forecast is made, i.e., at period  k , we compute 

1| 1
Pr( 0) 1/ ( 0)k

k k tt
R k I R+ =

> = >∑      (3) 

where ( )I ⋅  is the indicator function. 

 Our first forecasting model makes direct use of  (2). Using all available data at time k , we first 

regress tR  on a constant, ˆlog( )tσ , and 2ˆ[log( )]tσ , and compute  

2
0 1 2

ˆ ˆ ˆˆ ˆ ˆlog( ) [log( )]t t tμ β β σ β σ= + + , 1,...,t k=     (4) 

where ˆ tσ  is the square root of (actual, not forecasted) realized volatility . The period  k+1  forecast is 

then generated by 
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(5) 
 
 

i.e., F  is the empirical cdf of ˆ ˆ( ) /t t tR μ σ− . The one-step ahead volatility forecast 1|ˆ t tσ +  is generated 

from a recursively estimated model selected, at each period, by minimizing AIC or SIC, as described in 

the previous section. The one-step ahead mean forecast 1|ˆ t tμ +  is computed as  

2
1| 0 1 1| 2 1|

ˆ ˆ ˆˆ ˆ ˆlog( ) [log( )]t t t t t tμ β β σ β σ+ + += + + .    (6) 

The coefficients 0β̂ , 1̂β , and 2β̂  are recursively estimated using (4). A quadratic specification is used as 

the quadratic term is significant for almost all series in the starting estimation sample. Although the 

coefficients are recursively estimated, at each recursion no attempt is made to refine the model. We refer 

to forecasts from (5) as nonparametric forecasts (even though the realized volatility forecasts are 

generated using fully parametric models) to differentiate it from forecasts from our next model. 

 The second model is an extension of (1), and explicitly considers the interaction between 

volatility, skewness and kurtosis. This is done by using the Gram-Charlier expansion: 
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where ( )Φ ⋅  is the distribution function of a standard normal, and 3γ  and 4γ  are, respectively, the 

skewness and excess kurtosis, with the usual notation for conditioning on tΩ . This equation can be 

rewritten as  

2 3
1| 1 1| 1 0 1 1 2 1 3 11 ( ) 1 ( )( )t t t t t t t t t t t t tF x x x x xμ μ β β β β+ + + + + + +− − ≈ −Φ − + + +  
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with 0 3, 1|1 / 6t t tβ γ += + , 1 4, 1| 1 | /8t t t t tβ γ μ+ += − , 2
2 3, 1| 1 | / 6t t t t tβ γ μ+ += − , and 3

3 4, 1| 1 | / 24t t t t tβ γ μ+ += , 

where for notational convenience, we denote 1 1|1/t t tx σ+ += , 

 Several points should be noted. The sign of returns is predictable for nonzero 1|t tμ +  even when 

there is no volatility clustering, as long as the skewness and kurtosis are time varying. On the other hand, 

even if 1|t tμ +  is zero, sign predictability arises as long as conditional skewness dynamics is present, 

regardless of whether volatility dynamics is present. If there is no conditional skewness and excess 

kurtosis, the above equation is reduced to 

1| 1 1| 11 ( ) 1 ( )t t t t t tF x xμ μ+ + + +− − ≈ −Φ −    

so that normal approximation applies. If returns are conditionally symmetric but leptokurtic (i.e., 

3, 1| 0t tγ + =  and 4, 1| 0t tγ + > ), then 0 1tβ =  and 2 0tβ = , and we have    

3
1| 1 1| 1 1 1 3 11 ( ) 1 ( )(1 )t t t t t t t t t tF x x x xμ μ β β+ + + + + +− − ≈ −Φ − + + .    

Furthermore, if 1| 0t tμ + > , we have 1 0tβ <  and 3 0tβ > ; and the converse is true for 1| 0t tμ + < . Finally, 

if 1|t tμ +  is small, as in the case of short investment horizons, then 2tβ  and 3tβ  can safely be ignored, 

resulting in  

1| 1 1| 1 0 1 11 ( ) 1 ( )( )t t t t t t t t tF x x xμ μ β β+ + + + +− − ≈ −Φ − + . 

Thus, conditional skewness affects sign predictability through 0tβ , and conditional kurtosis affects sign 

predictability through 1tβ . When there is no conditional dynamics in skewness and kurtosis, the above 

equation is reduced to 

( ) ( )( )1| 1 1 | 1 0 1 11  1t t t t t t tF x x xμ μ β β+ + + + +− − −Φ − +    (7) 

for some time-invariant quantities 0β  and 1β . 
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 We use equation (7) as our second model for sign prediction, i.e., we generate forecasts of the 

probability of positive returns as  

1| 1| 1 0 1 1
ˆ ˆˆ ˆ ˆPr( 0) 1 ( )( )t t t t t tR x xμ β β+ + + +> = −Φ − +     (8) 

where 1| 1|ˆ ˆ1/t t t tx σ+ += , and where 1|ˆ t tμ +  and 1|ˆ t t tσ = +  are as defined earlier. We refer to these as forecasts 

from the “extended” model. The parameters 0β  and 1β  are estimated by regressing 1 ( 0)tI R− >  on 

ˆ ˆ( )t txμΦ −  and ˆ ˆ ˆ( )t t tx xμΦ −  for  t = 1, …, k. Although we have not explicitly placed any constraints on 

this model to require 0 1
ˆ ˆˆ ˆ ˆ( )( )t t tx xμ β βΦ − +  to lie between 0 and 1, this was inconsequential as all our 

predicted probabilities turn out to lie between 0 and 1. 

Forecast Evaluation 

 We perform post-sample comparison of the forecast performance of (5) and (8) for the sign of 

return. Both are compared against baseline forecasts (3). This is done for one-month, two-month, and 

three-month returns. We assess the performance of the forecasting models using Brier scores; for 

background see Diebold and Lopez (1996).  

 Two Brier scores are used: 

   Brier(Abs) = 1| 1
1 | Pr( 0) |T

t t tt k
R z

T k + +=
> −

− ∑  

  Brier(Sq) = 2
1| 1

1 2(Pr( 0) )T
t t tt k

R z
T k + +=

> −
− ∑  

where 1 1( 0)t tz I R+ += > . The latter is the traditional Brier score for evaluating the performance of 

probability forecasts, and is analogous to the usual mean square prediction error. A score of zero for 

Brier(Sq) occurs when perfect forecasts are made: where at each period correct probability forecasts of 0 

or 1 are made. The worst score is two and occurs if at each period probability forecasts of 0 or 1 are made, 

but turn out to be wrong each time. Note that if we follow the usual convention where a correct 
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probability forecast of 1( 0)tI R + >  is one that is greater than 0.5, then correct forecasts will have an 

individual Brier(Sq) score between 0 and 0.5, whereas incorrect forecasts have individual scores between 

0.5 and 2. A few incorrect forecasts can therefore dominate a majority of correct forecasts. 

 For this reason, we also consider a modified version of the Brier score, which we call Brier(Abs). 

Like Brier(Sq), the best possible score for Brier(Abs) is 0. The worst score is one. Here correct forecasts 

have individual scores between 0 and 0.5, whereas incorrect forecasts carry scores between 0.5 and 1.  

4.  Empirical Results 

 Figures 3a, 3b and 3c show, for the Hong Kong, UK, and US markets, the predicted probabilities 

generated by the baseline model, the nonparametric model, and the extended model (columns 1, 2, and 3 

respectively) for the one-month, two-month, and quarterly frequencies (rows 1, 2, and 3 respectively). For 

the nonparametric and extended models, forecasts based on both AIC and SIC volatility forecasts are 

plotted, although visually these are mostly indistinguishable. For all three markets, the baseline forecasts 

are very flat, at values slightly above 0.5. The nonparametric and extended forecasts show more 

variability, especially in the later periods. The figures for the other seventeen markets show similar 

characteristics. 

 Before reporting our main results, we highlight some interesting regularities in the Brier scores. 

In Table 3 we report the mean and standard deviation of the Brier(Abs) scores from the AIC based 

probability forecasts for the Hong Kong, UK, and US markets. Results are reported for three 

“subperiods”. The ‘low volatility subperiod’ comprises all dates for which realized volatility falls in the 

1st to 33rd percentile range. The ‘medium’ and ‘high’ volatility subperiods comprise all dates for which 

realized volatility falls in the 34th to 66th, and 67th to 100th percentile ranges. In all three markets, the 
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Brier score for the low volatility period is lower than the corresponding Brier score for the high volatility 

period. In contrast, the standard deviation of the Brier scores for the nonparametric and extended models 

are higher in the low volatility periods than in the high volatility periods. For instance, the mean Brier 

score for the extended model in the US market at the one-month frequency is 0.378 for the low volatility 

period and 0.532 in the high volatility period. The standard deviation of the same Brier scores fall from 

0.143 in the low volatility period, to 0.088 in the high volatility period. The patterns described here 

generalize to all markets in our study (except Japan), regardless of whether AIC or SIC volatility forecasts 

are used in generating probability forecasts, and regardless of whether Brier(Abs) or Brier(Sqr) is used to 

evaluate the forecasts. These findings seem perfectly reasonable: we should expect our models to have 

more to say in periods of low volatility, and little to say in periods of high volatility. In high volatility 

periods, the models tend to generate probability forecasts that are close to 0.5. The corresponding Brier 

scores in turn tend to be close to 0.5, resulting in the lower standard deviation of Brier scores in high 

volatility periods. 

Our main results are reported in Tables 4a to 4d. Table 4a contains our results for the full forecast 

period. Tables 4b to 4d contain the results for the low, medium, and high-volatility subperiods. In all four 

tables, both Brier(Abs) and Brier(Sq) are given for the baseline model. The Brier scores for the 

nonparametric and extended models are expressed relative to the baseline Brier scores. A relative measure 

of less than 1 therefore implies improvement in forecast performance. 

Table 4a shows improvement in the performance of the nonparametric or extended models over 

the baseline forecasts in just under half of all the cases considered, when using Brier(Abs) as a measure of 
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performance. All of the improvements, however, are very small. The best performance is for Sweden at 

the two-month frequency. The situation is worse when the forecasts are evaluated using Brier(Sq) instead.  

The fact that the nonparametric and extended models perform better during low volatility periods 

than during high volatility periods suggests that their performance relative to the baseline model might be 

better during low volatility periods than during high volatility periods. This is verified by the relative 

performances reported in Tables 4b to 4d. In Table 4b, there is improvement in all except two markets 

(Japan and Far East, which is heavily weighted on Japan). Although in some cases the improvements are 

small, there are many instances where the improvement is substantial. In a number of cases, the ratio of 

the Brier(Abs) scores for the extended / parametric models to the baseline model is less than 0.9. In the 

case of Denmark at the quarterly frequency, the ratio is 0.772 for the extended model. When Brier(Sq) is 

used to measure forecast performance, there are fewer instances where the nonparametric and extended 

models perform better than the baseline. The notable differences between the Brier(Sq) scores and 

Brier(Abs) scores occur for France, Hong Kong, and Singapore, where Brier(Sq) shows no improvements 

from the nonparametric and extended models. Nonetheless, over half of all the ratios reported under 

Brier(Sq) are less than one, and a number are less than 0.9. 

The ratios under Brier(Abs) also show that in a few cases, the extended model performs much 

better than the nonparametric model. The notable case is Denmark at the quarterly frequency, where the 

ratio for the nonparametric model is 0.937, whereas the ratio for the extended model is 0.772. Other 

instances include Belgium, France, Germany, Netherlands, UK, and USA at the quarterly frequency. 

Interestingly, the largest improvements by the extended model over the nonparametric model tend to 
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occur at the quarterly frequency. Using Brier(Sq), however, the nonparametric and extended models 

appear to perform similarly. 

We note also that for both Brier(Abs) and Brier(Sq), the performance of the nonparametric and 

extended models, relative to the baseline, is better at the quarterly frequency than at the monthly 

frequency. This occurs in just under half of the markets for Brier(Abs), and just over a third of the 

markets for Brier(Sq). This is to be expected, as the theory indicates that volatility-aided prediction 

depends on a sizable mean return, and the mean return increases in all markets as we go from monthly to 

quarterly frequencies. Finally, we note that the worst performances by the nonparametric and extended 

models occur for Japan, Singapore, and the Far East, and these are among the markets in our sample with 

the lowest mean returns over the period under consideration. 

The ratios in Tables 4c and 4d are qualitatively the same as Table 4a. In the medium volatility 

period only Sweden and Australia show any improvements in the performance of the nonparametric and 

extended models, using Brier(Abs). As expected, the performance of the nonparametric and extended 

models relative to baseline is even worse during the high volatility period. It appears that volatility in 

these periods is simply too large relative to the mean to be useful in guiding direction-of-change forecasts. 

Figures 4a and 4b show for the Hong Kong, UK, and US markets a clear picture of the forecast 

performance of the nonparametric and extended models compared to the baseline forecasts. At each 

frequency, we show a scatterplot of the Brier(Abs) scores of individual forecasts. We include only 

observations when volatility is low, as previously defined. In both figures the horizontal axis measures the 

Brier(Abs) scores for individual baseline forecasts. In Figure 4a, the vertical axis measures the Brier(Abs) 

scores for individual nonparametric forecasts. In Figure 4b, the vertical axis measures the Brier(Abs) 
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scores for individual forecasts from the extended model. We plot only the Brier scores for probability 

forecasts that use the AIC-based volatility forecasts. In addition to the scatterplots, we include a 

horizontal and vertical gridline at 0.5, and a 45 degree line. As a Brier(Abs) score below 0.5 indicates a 

correct forecast, points in the lower left quadrant indicate that both competing forecasts are correct, 

whereas a point in the lower right quadrant indicates that the baseline forecast for this observation is 

incorrect, with the competing forecast correct. Points below the 45 degree line indicate improvements in 

the Brier(Abs) scores over the baseline.  

In all three markets illustrated here, the nonparametric and extended models clearly provide better 

signals than the baseline model when both the baseline and the competing forecasts are correct. However, 

for Hong Kong and UK, the performance of the nonparametric and extended model is worse than the 

baseline model when the baseline and the competing forecasts are wrong. Note that the upper left and 

lower right quadrants of Figure 4a and 4b are mostly empty, which implies that the models by and large 

make predictions that are similar to the baseline forecasts. Nonetheless, there is evidence that when 

volatility is low, forecasts of volatility can improve the quality of the signal, in the sense of providing 

probability forecasts with improved Brier scores. All of these remarks hold in general for the other 

seventeen markets. 

5.  Summary and Directions for Future Research 

Methodologically, we have extended the Christoffersen-Diebold (2004) direction-of-change 

forecasting framework to include the potentially important effects of higher-ordered conditional moments.  

Empirically, in an application to an international sample of equity markets, we have verified the 

importance of allowing for higher-ordered conditional moments and taken a step toward evaluating the 
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real-time predictive performance. In future work, we look forward to using our direction-of-change 

forecasts to formulate and evaluate actual trading strategies, and to exploring their relationships to the 

“volatility timing” strategies recently studied by Fleming, Kirby and Ostdiek (2003), in which portfolio 

shares are dynamically adjusted based on forecasts of the variance-covariance matrix of the underlying 

assets. 
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Figure 1   Realized Volatility 
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Notes:  “Volatility” refers to the log of the square root of realized volatility constructed from daily returns. 
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Figure 2   Realized Volatility and Recursive Realized Volatility Forecasts 
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Notes:  “Volatility” refers to log of the square root of realized volatility constructed from daily returns. “AIC 
Forecasts” and “SIC Forecasts” are one-step ahead forecasts of volatility generated from recursively estimated 
ARMA models chosen (recursively) using the AIC and SIC criteria, respectively. 
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Figure 3a   Predicted Probabilities (Hong Kong) 
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Notes: “Nonparametric” forecasts (second column) refer to forecasts generated using  

( )1 1 | 1 |
ˆ ˆ ˆPr( 0) 1 /t t t t tR F μ σ+ + +> = − −   

where F  is the empirical cdf of ˆ ˆ( ) /t t tR μ σ− .  “Extended” (third column) refers to forecasts generated from the 
extended model  

( )( )1 1 0 1 1
ˆ ˆˆ ˆ ˆPr( 0) 1t t t tR x xμ β β+ + +> = −Φ − + .  

In both columns, the forecasts generated using AIC and SIC volatility forecasts are given (solid line vs. dotted line 
respectively), although in some cases these are visually indistinguishable. 
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Figure 3b   Predicted Probabilities (UK) 
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Notes: See notes to Figure 3a. 
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Figure 3c   Predicted Probabilities (USA) 
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Notes: See notes to Figure 3a. 
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Table 4a    Comparative Brier (Abs) Scores, Low Volatility  (Nonparametric vs. Baseline) 
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Notes: Horizontal axis measures individual Brier(Abs) scores for baseline forecasts. Vertical axis measures 
corresponding Brier(Abs) scores for the nonparametric forecasts. A score below 0.5 indicates a correct forecast. 
Only observations with volatility in the 1st to 33rd percentile range are included. 
 



 23 
 

Figure 4b   Comparative Brier (Abs) Scores, Low Volatility (Extended Model  vs. Baseline) 
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Notes: Horizontal axis measures individual Brier(Abs) scores for baseline forecasts. Vertical axis measures 
corresponding Brier(Abs) scores for the extended forecasts. A score below 0.5 indicates a correct forecast. Only 
observations with volatility in the 1st to 33rd percentile range are included. 
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Table 1a   Summary Statistics of the Full Sample of Returns, 1980:01 – 2004:06 
  
 Mean Std.Dev. Skewness Kurtosis JB p-val  Mean Std.Dev. Skewness Kurtosis JB p-val 

  Australia   Austria 
1 mth 0.007 0.058 –2.837 28.000 0.000  0.005 0.062 –0.065 6.171 0.000 
2 mth 0.013 0.083 –1.466 11.523 0.000  0.010 0.087 0.635 5.177 0.000 
3 mth 0.020 0.096 –1.602 10.104 0.000  0.016 0.119 0.073 6.369 0.000 

  Belgium   Canada 
1 mth 0.007 0.054 –0.450 6.787 0.000  0.006 0.050 –0.935 6.852 0.000 
2 mth 0.014 0.079 –0.272 5.975 0.000  0.011 0.073 –0.829 5.615 0.000 
3 mth 0.020 0.107 –0.593 5.006 0.000  0.017 0.090 –0.713 4.191 0.001 

  Denmark   France 
1 mth 0.009 0.055 –0.287 3.147 0.124  0.008 0.060 –0.626 4.341 0.000 
2 mth 0.019 0.073 –0.083 2.981 0.911  0.016 0.084 –0.604 4.331 0.000 
3 mth 0.028 0.103 –0.433 3.143 0.224  0.024 0.119 –0.988 5.173 0.000 

  Germany   Hong Kong 
1 mth 0.006 0.063 –0.901 5.812 0.000  0.008 0.091 –1.029 8.902 0.000 
2 mth 0.012 0.082 –0.496 3.885 0.006  0.016 0.125 –0.422 5.046 0.000 
3 mth 0.018 0.126 –1.361 6.300 0.000  0.025 0.164 –0.684 3.712 0.011 

  Italy   Japan 
1 mth 0.010 0.072 0.216 3.628 0.035  0.004 0.055 –0.284 4.211 0.000 
2 mth 0.020 0.101 0.449 3.498 0.048  0.007 0.077 0.166 2.938 0.696 
3 mth 0.030 0.134 0.262 4.160 0.055  0.011 0.108 –0.875 4.474 0.000 

  Netherlands   Norway 
1 mth 0.008 0.054 –0.929 5.915 0.000  0.006 0.073 –0.932 5.718 0.000 
2 mth 0.015 0.069 –0.774 4.869 0.000  0.012 0.101 –0.438 3.277 0.085 
3 mth 0.023 0.101 –1.594 6.976 0.000  0.018 0.138 –1.303 6.082 0.000 

  Singapore   Sweden 
1 mth 0.004 0.076 –1.457 12.166 0.000  0.014 0.073 –0.278 4.392 0.000 
2 mth 0.008 0.114 –1.011 7.532 0.000  0.027 0.099 0.264 3.432 0.275 
3 mth 0.011 0.145 –0.719 4.599 0.000  0.041 0.149 –0.606 3.920 0.013 

  Switzerland   UK 
1 mth 0.007 0.050 –1.101 6.829 0.000  0.008 0.049 –1.228 8.236 0.000 
2 mth 0.014 0.067 –0.543 3.773 0.006  0.015 0.064 –0.611 4.186 0.000 
3 mth 0.021 0.103 –1.215 6.881 0.000  0.023 0.085 –1.047 5.254 0.000 

  USA   Europe 
1 mth 0.008 0.045 –0.841 6.124 0.000  0.008 0.047 –1.366 7.559 0.000 
2 mth 0.016 0.058 –0.884 5.875 0.000  0.015 0.061 –0.918 4.844 0.000 
3 mth 0.024 0.082 –0.799 4.237 0.000  0.023 0.092 –1.461 6.628 0.000 

  Far East   World 
1 mth 0.004 0.053 –0.389 4.287 0.000  0.007 0.041 –1.140 6.541 0.000 
2 mth 0.007 0.074 0.126 3.007 0.825  0.013 0.054 –0.893 4.913 0.000 
3 mth 0.011 0.105 –0.915 4.543 0.000  0.020 0.083 –1.189 5.298 0.000 

            
 
Notes: Returns are per time interval (one month, two months or one quarter, not annualized). ‘JB p-val’ refers to the p-values of 
the Jarque-Bera statistic. 
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Table 1b   Summary Statistics of the Full Sample of Realized Volatility, 1980:01 – 2004:06 
 
 Mean Std.Dev. Skewness Kurtosis JB p-val  Mean Std.Dev. Skewness Kurtosis JB p-val 

  Australia   Austria 
1 mth –3.241 0.354 0.814 6.961 0.000  –3.435 0.601 –0.256 2.967 0.200 
2 mth –2.860 0.322 1.103 7.759 0.000  –3.041 0.566 –0.331 2.863 0.244 
3 mth –2.648 0.302 1.408 9.920 0.000  –2.819 0.545 –0.280 2.708 0.420 

  Belgium   Canada 
1 mth –3.357 0.485 0.697 3.564 0.000  –3.358 0.460 0.616 3.230 0.000 
2 mth –2.970 0.453 0.763 3.494 0.001  –2.976 0.432 0.699 2.920 0.003 
3 mth –2.740 0.431 0.735 3.567 0.008  –2.766 0.428 0.664 2.830 0.028 

  Denmark   France 
1 mth –3.207 0.403 –0.034 3.362 0.482  –3.064 0.408 0.593 3.718 0.000 
2 mth –2.827 0.360 –0.043 3.418 0.642  –2.687 0.376 0.713 3.470 0.001 
3 mth –2.598 0.329 –0.204 3.036 0.717  –2.470 0.362 0.709 3.451 0.014 

  Germany   Hong Kong 
1 mth –3.074 0.493 0.449 2.916 0.007  –2.737 0.451 0.682 3.835 0.000 
2 mth –2.695 0.470 0.404 2.620 0.083  –2.357 0.427 0.719 3.659 0.001 
3 mth –2.475 0.454 0.404 2.544 0.163  –2.126 0.405 0.727 3.437 0.011 

  Italy   Japan 
1 mth –2.923 0.401 0.392 3.128 0.023  –3.136 0.484 –0.076 3.057 0.861 
2 mth –2.547 0.370 0.356 2.876 0.201  –2.753 0.455 –0.223 3.057 0.549 
3 mth –2.331 0.359 0.267 2.590 0.367  –2.517 0.417 –0.239 2.758 0.531 

  Netherlands   Norway 
1 mth –3.123 0.455 0.635 3.764 0.000  –2.939 0.376 0.855 4.627 0.000 
2 mth –2.745 0.425 0.768 3.655 0.000  –2.550 0.333 1.077 4.707 0.000 
3 mth –2.523 0.406 0.830 3.567 0.003  –2.331 0.307 1.249 5.896 0.000 

  Singapore   Sweden 
1 mth –3.074 0.459 0.607 3.925 0.000  –2.949 0.452 0.319 2.869 0.074 
2 mth –2.683 0.428 0.599 3.889 0.002  –2.567 0.416 0.319 2.645 0.185 
3 mth –2.451 0.398 0.703 4.012 0.003  –2.352 0.402 0.348 2.670 0.283 

  Switzerland   UK 
1 mth –3.314 0.483 0.537 3.763 0.000  –3.213 0.362 0.821 4.677 0.000 
2 mth –2.928 0.462 0.433 3.438 0.066  –2.843 0.341 0.909 4.496 0.000 
3 mth –2.703 0.439 0.500 3.444 0.104  –2.626 0.323 0.936 4.799 0.000 

  USA   Europe 
1 mth –3.226 0.400 0.566 4.619 0.000  –3.434 0.468 0.836 3.621 0.000 
2 mth –2.851 0.377 0.658 4.476 0.000  –3.055 0.448 0.807 3.388 0.000 
3 mth –2.637 0.367 0.679 4.523 0.000  –2.835 0.436 0.789 3.335 0.006 

  Far East   World 
1 mth –3.184 0.468 0.128 2.854 0.569  –3.539 0.416 0.718 3.896 0.000 
2 mth –2.801 0.440 0.015 2.679 0.675  –3.164 0.394 0.766 3.623 0.000 
3 mth –2.566 0.404 –0.027 2.522 0.562  –2.947 0.379 0.794 3.727 0.003 

            
 
Notes.   “Volatility” refers to log of the square root of realized volatility computed from daily returns. ‘JB p-val’ refers to the p-
values of the Jarque-Bera statistic. 
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Table 2   Ratio of MSPE of Forecasts to Sample Variance, Realized Volatility 
 
 

 AIC 
Forecast 

SIC 
Forecast 

 AIC 
Forecast 

SIC 
Forecast 

 Australia  Austria 
1 mth 0.626 0.626  0.306 0.305 
2 mth 0.656 0.656  0.276 0.274 
3 mth 0.791 0.791  0.359 0.338 

 Belgium  Canada 
1 mth 0.574 0.602  0.497 0.491 
2 mth 0.785 0.751  0.522 0.521 
3 mth 0.696 0.730  0.552 0.547 

 Denmark  France 
1 mth 0.546 0.547  0.500 0.479 
2 mth 0.656 0.651  0.687 0.642 
3 mth 0.756 0.757  0.938 0.931 

 Germany  Hong Kong 
1 mth 0.436 0.436  0.479 0.486 
2 mth 0.477 0.483  0.632 0.631 
3 mth 0.505 0.478  0.575 0.586 

 Italy  Japan 
1 mth 0.592 0.592  0.435 0.437 
2 mth 0.665 0.665  0.405 0.405 
3 mth 0.686 0.656  0.481 0.512 

 Netherlands  Norway 
1 mth 0.531 0.544  0.716 0.716 
2 mth 0.741 0.739  0.712 0.769 
3 mth 0.695 0.721  0.756 0.742 

 Singapore  Sweden 
1 mth 0.558 0.554  0.448 0.426 
2 mth 0.613 0.615  0.516 0.531 
3 mth 0.579 0.617  0.657 0.694 

 Switzerland  UK 
1 mth 0.548 0.547  0.648 0.648 
2 mth 0.604 0.604  0.756 0.757 
3 mth 0.566 0.570  0.855 0.909 

 USA  Europe 
1 mth 0.537 0.531  0.515 0.518 
2 mth 0.592 0.592  0.675 0.691 
3 mth 0.563 0.563  0.710 0.757 

 Far East  World 
1 mth 0.459 0.464  0.491 0.502 
2 mth 0.430 0.430  0.565 0.565 
3 mth 0.474 0.479  0.557 0.587 

      
 
 

Notes: AIC and SIC indicate the criterion used to recursively select the model for 

forecasting 1|t tσ + . Numbers reported are the ratio of the Mean Square Prediction Error 

(MSPE) of realized volatility to the sample variance of realized volatility. 
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Table 3   Forecast Performance, Brier(Abs), Selected Markets 
 

  Baseline Nonparametric Extended 

  Mean Std.Dev. Mean Std.Dev. Mean Std.Dev. 
       
    Hong Kong   
 Low Vol. 0.507 0.075 0.510 0.208 0.504 0.239 

1 mth Med.Vol. 0.491 0.070 0.475 0.168 0.475 0.182 
 High Vol. 0.520 0.076 0.537 0.137 0.535 0.151 
        
 Low Vol. 0.512 0.126 0.518 0.298 0.512 0.265 

2 mth Med.Vol. 0.487 0.121 0.487 0.230 0.488 0.203 
 High Vol. 0.579 0.107 0.640 0.173 0.622 0.145 
        
 Low Vol. 0.435 0.132 0.390 0.241 0.402 0.223 

3 mth Med.Vol. 0.515 0.144 0.526 0.256 0.524 0.222 
 High Vol. 0.551 0.154 0.548 0.202 0.534 0.159 
       
    UK   
 Low Vol. 0.430 0.137 0.418 0.164 0.388 0.224 

1 mth Med.Vol. 0.507 0.157 0.516 0.165 0.519 0.215 
 High Vol. 0.500 0.151 0.522 0.123 0.531 0.153 
        
 Low Vol. 0.398 0.106 0.362 0.147 0.333 0.181 

2 mth Med.Vol. 0.511 0.160 0.526 0.178 0.546 0.193 
 High Vol. 0.517 0.160 0.514 0.154 0.518 0.158 
        
 Low Vol. 0.343 0.156 0.308 0.204 0.288 0.226 

3 mth Med.Vol. 0.470 0.220 0.484 0.247 0.491 0.254 
 High Vol. 0.566 0.201 0.638 0.173 0.638 0.162 
       
    USA   
 Low Vol. 0.419 0.093 0.404 0.104 0.378 0.143 

1 mth Med.Vol. 0.468 0.129 0.488 0.127 0.489 0.144 
 High Vol. 0.525 0.130 0.536 0.088 0.532 0.088 
        
 Low Vol. 0.417 0.109 0.412 0.134 0.375 0.196 

2 mth Med.Vol. 0.451 0.149 0.466 0.125 0.461 0.157 
 High Vol. 0.518 0.165 0.499 0.107 0.502 0.131 
        
 Low Vol. 0.433 0.162 0.405 0.172 0.379 0.231 

3 mth Med.Vol. 0.366 0.143 0.380 0.139 0.364 0.158 
 High Vol. 0.524 0.199 0.529 0.158 0.528 0.165 
        

 
 
Notes:  Brier(Abs) = 1| 11/ | |T

t t tt k
T p z+ +=

−∑  where  k  is the start of the estimation sample, 1|t tp +  is the one-step ahead forecast 

of 1Pr( 0)tR + >  made at time t , and 1 1( 0)t tz I R+ += > . At each time t , data from the first period up to time  t  is used to estimate 

the forecasting model. “Baseline” refers to forecasts generated from the unconditional empirical distribution of tR . 

“Nonparametric” refers to forecasts generated using 1|Pr( 0)t tR + >  = ( )1| 1|
ˆ ˆ ˆ1 /t t t tF μ σ+ +− −  where F  is the empirical cdf of 

ˆ ˆ( ) /t t tR μ σ− . “Extended” refers to forecasts generated from 1|Pr( 0)t tR + >  =  ( )( )1| 1 0 1 1
ˆ ˆˆ ˆ ˆ1 t t t tx xμ β β+ + +− Φ − + .  
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Table 4a   Relative Forecast Performance (Full Sample) 
 

 Brier(Abs)  Brier(Sq) 

 Bsln Npar Ext  Bsln Npar Ext  Bsln Npar Ext  Bsln Npar Ext 

 Australia  Austria  Australia  Austria 
1 mth 0.484 0.995 0.978  0.501 0.992 0.994  0.489 1.038 1.066  0.501 1.000 1.002 
2 mth 0.496 0.999 0.997  0.506 0.976 0.981  0.509 1.040 1.076  0.516 0.952 0.963 
3 mth 0.477 0.993 0.985  0.497 1.001 1.026  0.496 1.051 1.023  0.497 1.052 1.133 

 Belgium  Canada  Belgium  Canada 
1 mth 0.486 0.993 0.995  0.491 0.988 0.978  0.482 1.008 1.033  0.488 1.002 1.038 
2 mth 0.477 1.013 1.009  0.472 0.982 0.968  0.479 1.043 1.084  0.472 1.014 1.029 
3 mth 0.477 1.026 0.998  0.457 0.983 0.985  0.491 1.052 1.148  0.452 1.036 1.059 

 Denmark  France  Denmark  France 
1 mth 0.482 1.012 1.007  0.483 1.017 1.017  0.489 1.013 1.024  0.485 1.038 1.073 
2 mth 0.464 1.007 0.969  0.490 0.996 0.997  0.482 0.989 1.002  0.500 1.034 1.083 
3 mth 0.438 0.990 0.925  0.435 1.076 1.014  0.434 0.973 0.957  0.456 1.144 1.165 

 Germany  Hong Kong  Germany  Hong Kong 
1 mth 0.489 1.010 1.017  0.506 1.005 1.001  0.493 1.058 1.102  0.524 1.102 1.123 
2 mth 0.491 0.997 0.994  0.526 1.043 1.028  0.504 1.028 1.091  0.584 1.231 1.158 
3 mth 0.469 1.022 0.984  0.500 0.975 0.973  0.479 1.093 1.088  0.544 1.081 1.027 

 Italy  Japan  Italy  Japan 
1 mth 0.504 1.015 1.037  0.502 1.002 1.004  0.512 1.051 1.124  0.514 0.998 1.003 
2 mth 0.482 0.993 0.992  0.509 1.017 1.009  0.486 1.011 1.016  0.520 1.044 1.051 
3 mth 0.494 1.002 1.020  0.497 1.080 1.084  0.506 1.040 1.121  0.548 1.095 1.155 

 Netherlands  Norway  Netherlands  Norway 
1 mth 0.478 1.023 1.023  0.490 0.989 0.973  0.479 1.068 1.106  0.493 1.016 1.032 
2 mth 0.479 1.003 0.998  0.496 0.984 0.974  0.513 1.023 1.036  0.497 1.000 1.009 
3 mth 0.437 1.089 1.042  0.462 0.973 0.961  0.451 1.175 1.152  0.455 1.014 1.034 

 Singapore  Sweden  Singapore  Sweden 
1 mth 0.501 1.016 1.020  0.479 0.986 0.970  0.506 1.073 1.129  0.482 0.973 0.961 
2 mth 0.514 1.033 1.055  0.469 0.939 0.927  0.539 1.112 1.207  0.479 0.916 0.894 
3 mth 0.524 1.019 1.049  0.463 0.958 0.947  0.569 1.051 1.172  0.482 0.992 1.057 

 Switzerland  UK  Switzerland  UK 
1 mth 0.473 1.016 1.027  0.482 1.013 1.003  0.472 1.047 1.119  0.510 1.031 1.084 
2 mth 0.479 1.014 1.017  0.477 0.984 0.981  0.498 1.040 1.089  0.500 0.999 1.031 
3 mth 0.465 1.031 1.044  0.460 1.036 1.027  0.482 1.114 1.205  0.510 1.124 1.129 

 USA  Europe  USA  Europe 
1 mth 0.469 1.011 0.991  0.458 1.053 1.036  0.471 1.015 1.003  0.492 1.037 1.068 
2 mth 0.462 0.994 0.967  0.479 1.008 1.029  0.470 0.964 0.969  0.525 1.009 1.030 
3 mth 0.441 0.993 0.961  0.405 1.103 1.081  0.450 0.972 0.966  0.440 1.122 1.102 

 Far East  World  Far East  World 
1 mth 0.501 1.008 1.012  0.474 0.999 0.991  0.516 1.006 1.017  0.501 0.996 1.021 
2 mth 0.512 1.009 0.999  0.475 0.989 0.994  0.529 1.032 1.030  0.501 0.991 1.009 
3 mth 0.504 1.050 1.052  0.424 1.026 1.007  0.569 1.055 1.100  0.458 1.027 1.043 

                
 
Notes: Brier(Abs) = 1| 11/ | |T

t t tt k
T p z+ +=

−∑  and Brier(Sq) = 2
1| 11/ 2( )T

t t tt k
T p z+ +=

−∑  where  k  is the start of the estimation 

sample, 1|t tp +  is the one-step ahead forecast of 1Pr( 0)tR + >  made at time t , and 1 1( 0)t tz I R+ += > . At each time t , data from 

the first period up to time  t  is used to estimate the forecasting model.  “Bsln”  refer to forecasts generated from the unconditional 

empirical distribution of tR . “Npar” refers to forecasts generated using 1|Pr( 0)t tR + >  = ( )1| 1|
ˆ ˆ ˆ1 /t t t tF μ σ+ +− −  where F  is the 

empirical cdf of ˆ ˆ( ) /t t tR μ σ− . “Ext” refers to forecasts generated from 1|Pr( 0)t tR + >  =  ( )( )1| 1 0 1 1
ˆ ˆˆ ˆ ˆ1 t t t tx xμ β β+ + +− Φ − + .  

Actual Brier scores are reported for the baseline forecasts. All other scores are Brier scores for the given model divided by the 

Brier score for the baseline forecast. Ratios below 1 are in bold print.  



 29 
 

Table 4b   Forecast Performance, Low Volatility Periods (1st to 33rd percentile) 
 

 Brier(Abs)  Brier(Sq) 

 Bsln Npar Ext  Bsln Npar Ext  Bsln Npar Ext  Bsln Npar Ext 

 Australia  Austria  Australia  Austria 
1 mth 0.494 0.994 0.987  0.501 0.988 0.984  0.508 1.040 1.087  0.503 0.997 0.985 
2 mth 0.486 0.983 0.973  0.517 0.939 0.943  0.487 1.011 1.025  0.540 0.879 0.887 
3 mth 0.441 0.941 0.941  0.494 0.961 0.971  0.426 0.965 0.957  0.490 0.977 1.036 

 Belgium  Canada  Belgium  Canada 
1 mth 0.474 0.964 0.943  0.470 0.907 0.837  0.455 0.962 0.951  0.445 0.860 0.799 
2 mth 0.446 0.968 0.925  0.447 0.882 0.857  0.417 0.972 0.956  0.417 0.879 0.906 
3 mth 0.446 1.023 0.917  0.427 0.899 0.891  0.425 1.059 1.029  0.388 0.925 0.924 

 Denmark  France  Denmark  France 
1 mth 0.477 1.004 0.989  0.469 1.006 0.991  0.478 1.015 1.027  0.456 1.039 1.066 
2 mth 0.442 1.004 0.927  0.474 0.968 0.953  0.428 1.017 1.001  0.466 1.003 1.039 
3 mth 0.385 0.937 0.772  0.388 1.036 0.913  0.320 0.912 0.775  0.354 1.117 1.025 

 Germany  Hong Kong  Germany  Hong Kong 
1 mth 0.475 0.941 0.921  0.507 1.004 0.993  0.464 0.966 0.970  0.526 1.148 1.178 
2 mth 0.460 0.968 0.953  0.512 1.011 1.000  0.442 1.014 1.090  0.555 1.269 1.186 
3 mth 0.446 0.882 0.806  0.435 0.896 0.923  0.426 0.889 0.881  0.411 1.002 1.010 

 Italy  Japan  Italy  Japan 
1 mth 0.511 1.019 1.038  0.490 1.017 1.027  0.525 1.063 1.143  0.492 1.039 1.056 
2 mth 0.484 0.970 0.953  0.509 1.042 1.045  0.488 0.991 0.968  0.522 1.100 1.124 
3 mth 0.480 0.954 0.922  0.483 1.120 1.120  0.475 0.960 0.956  0.534 1.170 1.272 

 Netherlands  Norway  Netherlands  Norway 
1 mth 0.466 0.956 0.923  0.468 0.957 0.908  0.452 0.970 0.973  0.448 0.962 0.928 
2 mth 0.434 0.948 0.929  0.490 0.968 0.933  0.427 0.981 0.990  0.484 0.970 0.946 
3 mth 0.422 1.017 0.955  0.417 0.886 0.828  0.417 1.090 1.083  0.362 0.855 0.801 

 Singapore  Sweden  Singapore  Sweden 
1 mth 0.498 0.995 0.981  0.438 0.965 0.932  0.500 1.073 1.123  0.397 0.956 0.927 
2 mth 0.508 0.993 0.986  0.408 0.895 0.890  0.531 1.090 1.178  0.348 0.877 0.885 
3 mth 0.514 1.011 1.026  0.411 0.940 0.903  0.560 1.053 1.204  0.374 1.029 1.061 

 Switzerland  UK  Switzerland  UK 
1 mth 0.448 0.922 0.890  0.430 0.972 0.904  0.420 0.893 0.874  0.406 0.990 0.985 
2 mth 0.418 0.941 0.926  0.398 0.909 0.836  0.374 0.956 0.963  0.338 0.896 0.839 
3 mth 0.393 0.947 0.911  0.343 0.897 0.839  0.333 1.035 1.027  0.281 0.950 0.929 

 USA  Europe  USA  Europe 
1 mth 0.419 0.964 0.903  0.393 1.031 0.969  0.368 0.944 0.887  0.363 1.066 1.072 
2 mth 0.417 0.989 0.899  0.414 1.000 1.053  0.370 1.011 0.956  0.397 1.050 1.152 
3 mth 0.433 0.934 0.875  0.357 0.994 0.990  0.423 0.902 0.911  0.343 0.961 0.977 

 Far East  World  Far East  World 
1 mth 0.491 1.010 1.015  0.412 0.944 0.893  0.500 1.023 1.040  0.375 0.961 0.946 
2 mth 0.505 1.043 1.040  0.424 0.940 0.931  0.520 1.117 1.124  0.397 0.999 1.008 
3 mth 0.484 1.061 1.073  0.367 0.889 0.826  0.546 1.076 1.178  0.346 0.899 0.890 

                
 
Notes: See notes to Table 4a.
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Table 4c   Forecast Performance , Medium Volatility Periods (34th to 66th percentile) 
 

 Brier(Abs)  Brier(Sq) 

 Bsln Npar Ext  Bsln Npar Ext  Bsln Npar Ext  Bsln Npar Ext 

 Australia  Austria  Australia  Austria 
1 mth 0.464 0.983 0.945  0.500 0.967 0.981  0.450 1.018 1.004  0.501 0.949 0.972 
2 mth 0.476 0.984 0.961  0.501 1.000 1.003  0.469 1.014 1.016  0.505 1.001 1.007 
3 mth 0.444 0.979 0.975  0.501 1.011 1.039  0.431 1.025 1.004  0.504 1.072 1.162 

 Belgium  Canada  Belgium  Canada 
1 mth 0.477 0.983 0.975  0.501 1.006 1.025  0.465 0.987 0.983  0.509 1.037 1.119 
2 mth 0.476 1.029 1.022  0.476 1.003 0.989  0.479 1.074 1.106  0.479 1.053 1.065 
3 mth 0.464 1.011 0.963  0.461 1.000 1.005  0.468 1.021 1.070  0.463 1.079 1.112 

 Denmark  France  Denmark  France 
1 mth 0.466 1.017 1.010  0.477 1.013 1.002  0.458 1.020 1.023  0.475 1.028 1.039 
2 mth 0.460 1.021 0.988  0.482 0.993 0.999  0.477 1.008 1.022  0.484 1.040 1.101 
3 mth 0.402 1.027 0.962  0.386 1.025 0.906  0.365 1.028 0.991  0.362 1.013 0.957 

 Germany  Hong Kong  Germany  Hong Kong 
1 mth 0.484 1.030 1.045  0.491 0.967 0.966  0.485 1.090 1.128  0.492 1.029 1.046 
2 mth 0.484 1.038 1.043  0.487 1.000 1.002  0.492 1.105 1.158  0.502 1.144 1.104 
3 mth 0.437 1.164 1.108  0.515 1.022 1.019  0.419 1.370 1.324  0.568 1.187 1.129 

 Italy  Japan  Italy  Japan 
1 mth 0.500 1.004 1.010  0.506 1.003 1.005  0.504 1.033 1.081  0.521 0.995 0.999 
2 mth 0.466 1.005 1.007  0.511 1.001 0.977  0.454 1.042 1.053  0.523 1.005 0.984 
3 mth 0.502 1.014 1.076  0.527 0.997 1.023  0.523 1.069 1.239  0.597 0.950 1.021 

 Netherlands  Norway  Netherlands  Norway 
1 mth 0.495 1.031 1.043  0.486 0.983 0.965  0.514 1.078 1.132  0.483 1.007 1.023 
2 mth 0.494 1.067 1.075  0.481 0.966 0.950  0.543 1.130 1.158  0.467 0.965 0.961 
3 mth 0.417 1.136 1.068  0.448 0.955 0.942  0.414 1.301 1.235  0.425 0.976 0.987 

 Singapore  Sweden  Singapore  Sweden 
1 mth 0.504 0.991 0.981  0.480 0.972 0.948  0.511 1.008 1.020  0.485 0.956 0.934 
2 mth 0.518 1.036 1.068  0.437 0.939 0.951  0.544 1.096 1.192  0.416 0.935 0.954 
3 mth 0.514 1.023 1.033  0.452 0.936 0.902  0.541 1.061 1.127  0.464 0.954 0.929 

 Switzerland  UK  Switzerland  UK 
1 mth 0.458 1.045 1.054  0.507 1.017 1.023  0.443 1.090 1.136  0.563 1.040 1.116 
2 mth 0.466 1.078 1.096  0.511 1.028 1.068  0.475 1.153 1.220  0.572 1.072 1.168 
3 mth 0.480 1.011 1.029  0.470 1.029 1.045  0.516 1.045 1.146  0.532 1.093 1.133 

 USA  Europe  USA  Europe 
1 mth 0.468 1.043 1.047  0.477 1.033 1.015  0.470 1.080 1.106  0.533 0.986 1.003 
2 mth 0.451 1.032 1.023  0.513 1.023 1.043  0.449 1.031 1.052  0.595 1.027 1.030 
3 mth 0.366 1.040 0.996  0.360 1.310 1.238  0.306 1.065 1.021  0.351 1.494 1.424 

 Far East  World  Far East  World 
1 mth 0.505 1.006 1.010  0.480 1.025 1.037  0.523 0.998 1.004  0.514 1.043 1.084 
2 mth 0.523 0.958 0.920  0.479 1.012 1.041  0.550 0.925 0.869  0.510 1.009 1.063 
3 mth 0.501 1.049 1.050  0.337 1.176 1.155  0.554 1.046 1.070  0.285 1.311 1.334 

                
 
Notes: See notes to Table 4a.
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Table 4d   Forecast Performance , High Volatility Periods (66th to 100th percentile) 
 

 Brier(Abs)  Brier(Sq) 

 Bsln Npar Ext  Bsln Npar Ext  Bsln Npar Ext  Bsln Npar Ext 

 Australia  Austria  Australia  Austria 
1 mth 0.487 1.000 0.988  0.501 1.017 1.014  0.496 1.041 1.077  0.501 1.045 1.041 
2 mth 0.526 1.027 1.051  0.500 0.989 0.997  0.570 1.086 1.166  0.504 0.978 0.995 
3 mth 0.545 1.045 1.028  0.497 1.031 1.069  0.632 1.126 1.081  0.497 1.104 1.200 

 Belgium  Canada  Belgium  Canada 
1 mth 0.509 1.034 1.067  0.500 1.042 1.061  0.529 1.072 1.155  0.509 1.084 1.159 
2 mth 0.507 1.036 1.066  0.493 1.049 1.045  0.539 1.068 1.159  0.517 1.081 1.089 
3 mth 0.520 1.042 1.098  0.482 1.042 1.050  0.580 1.072 1.298  0.507 1.083 1.113 

 Denmark  France  Denmark  France 
1 mth 0.506 1.014 1.020  0.500 1.030 1.054  0.540 1.002 1.019  0.522 1.041 1.105 
2 mth 0.490 0.996 0.988  0.513 1.025 1.034  0.539 0.949 0.985  0.547 1.053 1.102 
3 mth 0.526 1.001 1.008  0.532 1.142 1.167  0.618 0.973 1.032  0.651 1.231 1.356 

 Germany  Hong Kong  Germany  Hong Kong 
1 mth 0.506 1.054 1.076  0.520 1.032 1.029  0.529 1.106 1.189  0.552 1.110 1.118 
2 mth 0.527 0.982 0.983  0.579 1.105 1.075  0.576 0.973 1.034  0.692 1.265 1.176 
3 mth 0.523 1.024 1.033  0.551 0.995 0.970  0.591 1.045 1.070  0.652 1.040 0.949 

 Italy  Japan  Italy  Japan 
1 mth 0.501 1.021 1.056  0.510 0.985 0.981  0.507 1.053 1.139  0.528 0.962 0.956 
2 mth 0.496 1.002 1.013  0.506 1.009 1.008  0.515 1.003 1.028  0.514 1.028 1.049 
3 mth 0.501 1.035 1.058  0.482 1.129 1.114  0.520 1.084 1.154  0.512 1.184 1.188 

 Netherlands  Norway  Netherlands  Norway 
1 mth 0.479 1.081 1.101  0.520 1.026 1.043  0.482 1.151 1.207  0.553 1.072 1.133 
2 mth 0.505 0.986 0.979  0.517 1.017 1.035  0.566 0.950 0.953  0.540 1.057 1.104 
3 mth 0.471 1.110 1.096  0.522 1.058 1.084  0.523 1.142 1.142  0.576 1.142 1.217 

 Singapore  Sweden  Singapore  Sweden 
1 mth 0.500 1.053 1.087  0.522 1.014 1.018  0.503 1.124 1.220  0.571 0.997 1.002 
2 mth 0.515 1.067 1.106  0.560 0.969 0.933  0.540 1.148 1.249  0.666 0.924 0.860 
3 mth 0.545 1.024 1.086  0.526 0.992 1.019  0.605 1.041 1.182  0.609 0.998 1.152 

 Switzerland  UK  Switzerland  UK 
1 mth 0.510 1.075 1.127  0.500 1.044 1.063  0.547 1.139 1.301  0.544 1.053 1.121 
2 mth 0.549 1.013 1.017  0.517 0.995 1.002  0.638 1.003 1.062  0.583 0.984 1.002 
3 mth 0.521 1.114 1.158  0.566 1.127 1.126  0.598 1.217 1.356  0.717 1.214 1.204 

 USA  Europe  USA  Europe 
1 mth 0.525 1.021 1.015  0.509 1.075 1.094  0.583 1.009 0.997  0.593 1.046 1.106 
2 mth 0.518 0.964 0.969  0.507 1.000 0.996  0.588 0.885 0.912  0.577 0.964 0.950 
3 mth 0.524 1.009 1.008  0.498 1.031 1.034  0.622 0.974 0.977  0.626 1.000 0.990 

 Far East  World  Far East  World 
1 mth 0.506 1.007 1.011  0.521 1.017 1.024  0.525 0.999 1.009  0.592 0.977 1.008 
2 mth 0.507 1.027 1.040  0.519 1.007 0.999  0.518 1.064 1.110  0.590 0.972 0.962 
3 mth 0.529 1.040 1.034  0.568 1.027 1.036  0.607 1.043 1.056  0.743 0.978 1.003 

                
 
Notes: See notes to Table 4a. 

  


