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Abstract

It is well-known that maximum likelihood (ML) estimation of the autoregres-
sive parameter of a dynamic panel data model with �xed e¤ects is inconsistent
under �xed time series sample size (T ) and large cross section sample size (N)
asymptotics. The estimation bias is particularly relevant in practical applications
when T is small and the autoregressive parameter is close to unity. The present
paper proposes a general, computationally inexpensive method of bias reduction
that is based on indirect inference (Gouriéroux et al., 1993), shows unbiasedness
and analyzes e¢ ciency. The method is implemented in a simple linear dynamic
panel model, but has wider applicability and can, for instance, be easily ex-
tended to more complicated frameworks such as nonlinear models. Monte Carlo
studies show that the proposed procedure achieves substantial bias reductions
with only mild increases in variance, thereby substantially reducing root mean
square errors. The method is compared with certain consistent estimators and
bias-corrected ML estimators previously proposed in the literature and is shown
to have superior �nite sample properties to GMM and the bias-corrected ML of
Hahn and Kuersteiner (2002). Finite sample performance is compared with that
of a recent estimator proposed by Han and Phillips (2005).
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1 Introduction
It is well known to econometricians that in dynamic panel models with �xed e¤ects
conventional estimation procedures such as (Gaussian) maximum likelihood (ML) or
least-squares dummy-variable (LSDV) are asymptotically justi�ed only when the num-
ber of time series observations (T ) is large. For instance, when T is small and �xed (a
single digit number, say, as occurs in many practical short time span panels), the ML
estimator is inconsistent under large N asymptotics. Nickell (1981) derived analytic
formulae for the asymptotic bias under such �xed T , large N asymptotics. Using this
formula and related formulae for cases with incidental trends (Phillips and Sul, 2004)
it is easy to see that in many practically relevant cases the magnitude of the bias is
considerable, and sometimes substantial enough to change the sign of the autoregres-
sive coe¢ cient estimate. At a more general level, the problem of estimation bias is of
great importance in the practical use of econometric estimates, for instance, in testing
theories and evaluating policies.
In the search for consistent estimators, much of the literature in the past two decades

has focused on generalized method of moment (GMM) procedures and estimation meth-
ods based on instrumental variable (IV) methods, often involving lagged variables as
instruments. Important contributions include Holtz-Eakin, Newey and Rosen (1988),
Arellano and Bond (1991), Ahn and Schmidt (1992), Hahn (1997), Blundell and Bond
(1998), and Alvares and Arellano (2003). Although GMM/IV estimators are consistent
when designed properly to take into account the number of lags in the given model,
consistency comes at a cost. In particular, the reduction in asymptotic bias in vari-
ous GMM/IV estimators is achieved by an increase, which can be substantial, in the
variance. Moreover, most of the consistent GMM estimates proposed in the literature
are highly model speci�c. For example, the methods fail when the dynamic lag or-
der is misspeci�ed, and it is di¢ cult to use the standard panel GMM estimators in
more complicated frameworks, for instance, when there is nonlinearity in the dynamics
(Hahn and Kuersteiner, 2002). Some new developments addressing these particular
issues involve generalized model choice (Lee, 2005a) and nonparametric approaches
(Lee, 2005b).
In the recent literature also, several improved estimation methods have been pro-

posed, some of them motivated by the following idea. If a bias-corrected ML estimator
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can be found, such an estimator may outperform the consistent GMM/IV estimator
on root mean squared error (RMSE) criteria (Bun and Carree, 2005, Kiviet, 1995, and
Hahn and Kuersteiner, 2002). Consequently, some attempts have been made to pursue
this approach and correct for bias in the ML estimator under various circumstances.
The present paper seeks to address the problem of bias reduction in dynamic panel

modeling by using the technique of indirect inference (Gouriéroux et al., 1993). While
indirect inference methods have been extensively used in various time series models for
bias correction (e.g., Gouriéroux et al., 2000), we know of no earlier implementation in
the context of dynamic panel models.
Indirect inference has several advantages in dynamic panels. Its primary advan-

tage is its generality. Unlike other bias reduction methods, such as those based on
explicit analytic expressions for the bias function or the leading terms in an asymp-
totic expansion of the bias, the indirect inference technique calibrates the bias function
via simulation and hence does not require a given explicit form for the bias func-
tion or its expansion. Consequently, the method is applicable in a broad range of
model speci�cations including nonlinear models (but note also the recent work of Lee
(2005b) on alternative nonparametric estimation methods). Since panel models are
two-dimensional in the sample size, the bias term is often of a complicated form and
may in some cases be infeasible to obtain, although Lee (2004a) provides some gen-
eral expressions for higher order dynamic speci�cations. Even the asymptotic bias
expansions can be complicated, especially as the model itself becomes more complex
and includes other incidental e¤ects such as trends. In all these cases, the versatility
of indirect inference is a signi�cant advantage and makes the method well-suited for
empirical implementation.
A second advantage of indirect inference is that the approach to bias reduction can

be used with many di¤erent estimation methods, including general methods like ML or
LSDV, and in doing so may inherit some of the nice properties of the initial estimators.
For instance, it is well known that MLE has very small dispersion relative to many
consistent estimators and indirect inference applied to the MLE should preserve its good
dispersion characteristic while at the same time achieving substantial bias reductions.
Accordingly, indirect inference can performs very well on RMSE comparisons, as our
own simulations later con�rm. Unlike some other bias correction techniques, which
are designed speci�cally for particular cases (such as when T is either small or large),
the method developed here is generic and works extremely well for any values of N
and T . Finally, although indirect inference is a simulation-based method, which can
in some cases be computationally involved, it is computationally inexpensive in the
context of dynamic panel models. This is because we propose to use the MLE as the
base estimator and since the MLE has small variance only a small number of simulated
paths is su¢ cient to ensure an accurate calibration of the bias function that is needed
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for the implementation of indirect inference.
Our �ndings indicate that indirect inference provides a very substantial improve-

ment over existing methods. For example, when T = 5, and N = 100 in a simple
dynamic panel model with autoregressive coe¢ cient � = 0:9, the RMSE of the indirect
inference estimator is 85:5%, 57:2%, 82:9%, and 28% smaller than that of a GMM
estimator, the bias-corrected ML estimator of Hahn and Kuersteiner (2002), the ML
estimator, and the new estimator of Han and Phillips (2005), respectively.
The paper is organized as follows. Section 2 brie�y reviews various estimation

methods in the context of a simple linear dynamic panel model. Section 3 introduces a
generic version of the indirect inference procedure and gives some statistical properties
of the resulting estimator related to unbiasedness and e¢ ciency. In Section 4, the �nite
sample performance of the indirect inference estimate is compared with that of some
existing approaches. Section 5 concludes.

2 Some Existing Estimation Methods in Dynamic
Panel Models

We start the discussion with a brief review of the well-known bias result for the following
simple dynamic panel model with �xed e¤ects:

yit = �i + �yit�1 + �it; (1)

where �it � iidN(0; �2), i = 1; � � � ; N , t = 1; � � � ; T , the true value of � is �0 2 � with
� being a compact set in the stable region and j�0j < 1. The initial condition is set to
be

yi0 =
�i
1� � +

�i0p
1� �2

;

where �i0 � N(0; �2), independent of f�it, i = 1; � � � ; N , t = 1; � � � ; Tg; so that the
distribution of yi0 follows the stationary distribution of the AR(1) process (1).
The ML (�xed e¤ects or within-group or LSDV) estimator of � is given by

�̂
ML

NT = (y
0
�Ay�)

�1y0�Ay; (2)

where y = (y1; � � � ; yN)0 with yi = (yi1; � � � ; yiT )0, A = IN 
AT with AT = IT � 1
T
�0T �T ,

y� = (y1�; � � � ; yN�)0 with yi� = (yi0; � � � ; yiT�1)0.
Nickell (1981) showed that the ML estimator is inconsistent when N ! 1 and T

is �xed. The reason for the inconsistency comes from the endogeneity of the regressor
in the de-meaned regression,

yit � yi� = �(yit�1 � yi��1) + (�it � �i�);
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where yi� =
PT

i=1 yit=T , yi��1 =
PT�1

i=0 yit=T , �i� =
PT

i=1 �it=T . Since the regressor
and the disturbance term are correlated in this regression and this correlation does not
disappear as N !1 when T is �nite, the ML estimator (2) is asymptotically biased.
Nickell (1981)�s expression for the asymptotic bias is

plimN!1(�̂
ML

NT � �0) = �
(1� �20)fT (�0)

T � 1

�
1� 2�0fT (�0)

T � 1

��1
= GT (�0) ; (3)

where fT (�) = 1
1��(1 �

1��T
T (1��)). The bias disappears as T ! 1, but may be consid-

erable for small values of T and the smaller is T , the larger the bias. If �0 > 0, the
bias is always negative, and the larger is �0, the larger the bias. But the bias does not
disappear as �0 goes to zero.
Applying the �rst di¤erence transformation to (1), we have

�yit = ��yit�1 +��it; (4)

which gives rise to the following moment conditions,

E(�yit�1 � yit�s) = 0; for s = 2; 3; � � � ; t� 1: (5)

Equation (5) suggests a GMM/IV approach to estimation for the equation in �rst
di¤erence form. This GMM/IV procedure was introduced and developed by Andersen
and Hsiao (1981, 1982), Holtz-Eakin, Newey and Rosen (1988) and Arellano and Bond
(1991), and the resulting estimator is consistent as long as N ! 1 regardless of T .
More sophisticated GMM/IV procedures have been proposed in recent years by, among
others, Arellano and Bover (1995) and Blundell and Bond (1998).
Despite the consistency property of GMM/IV, it is known that its �nite sample

properties can be poor. A particular handicap of this approach is that as the autore-
gressive parameter moves close to unity the instruments become weak and attendant
problems of weak instrumentation arise. In such cases, the GMM/IV estimator of the
autoregressive parameter can su¤er from substantial bias and large variation. In other
circumstances, when the number of moment conditions becomes large, the GMM/IV
estimator also su¤ers from large �nite sample bias (Bun and Kiviet, 2002, Ziliak, 1997).
Finally, the GMM/IV estimator is designed for linear dynamic systems and is not read-
ily applicable to nonlinear models.
To overcome the weak instrumentation problem that arises in near unit root panels,

Han and Phillips (2005) replaced the weak moment conditions (5) by a set of new
moment conditions, i.e.,

E(�yit�1 � [(2�yit +�yit�1)� ��yit�1]) = 0: (6)
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This approach leads to a new estimator of the form

�̂
HP

NT =

PN
i=1

PT
t=1�yit�1(2�yit +�yit�1)PN
i=1

PT
t=1(�yit�1)

2
: (7)

Han and Phillips (2005) established the following large N and large T asymptotics for
this estimator p

NT (�̂
HP

NT � �)) N(0; 2(1 + �)): (8)

and fournd that these asymptotics work very well when � is close to 1, even for T as
small as 3.
Hahn and Kuersteiner (2002) also resorted to large N and T asymptotics. In

particular, they showed that when both N and T approach in�nity and 0 < lim N
T
=

c <1, p
NT (�̂

ML

NT � (��
1

T
(1 + �)))) N(0; (1� �2)): (9)

As T passes to in�nity, the ML estimator becomes consistent. However, the asymptotic
distribution is not centered at the origin and there is an asymptotic bias in the limiting
distribution. Accordingly, Hahn and Kuersteiner (2002) introduced a bias-corrected
ML estimator centered at the origin, which is a feasible version of the bias-corrected
ML estimator of Kiviet (1995) because it does not require that the true value �0 be

known. If the the bias-corrected MLE is denoted by �̂
HK

NT ; Hahn and Kuersteiner (2002)
showed that p

NT (�̂
HK

NT � �)) N(0; (1� �2)): (10)

Since 1 � �2 < 2(1 + �), �̂
HK

NT always has a smaller asymptotic variance than �̂
HP

NT .
Bun and Carree (2005) proposed alternative bias-corrected ML estimators under the
assumption that T may be small.
Using simulations, Kiviet (1995) showed that in many practically relevant cases, the

bias-corrected ML estimator has smaller RMSE than various GMM estimators. Hahn
and Kuersteiner (2002) also examined the �nite sample properties of the bias-correct
ML estimator and made comparisons with GMM. From these studies, the superiority
of the bias-corrected ML estimator over GMM is now documented in many empirically
relevant circumstances. The improvement is particularly substantial when � is close to
unity.

5



3 Estimating Dynamic Panel Models via Indirect
Inference

3.1 Estimating AR(1) models via indirect inference
The indirect inference procedure, �rst introduced by Gouriéroux et al (1993) and inde-
pendently proposed by Smith (1993) and Gallant and Tauchen (1996), can be under-
stood as a generalization of the simulated method of moments approach of Du¢ e and
Singleton (1993). It has been found to be a highly useful procedure when the moments
and the likelihood function of the true model are di¢ cult to deal with, but the true
model is amenable to data simulation. Gouriéroux et al (1993) provided conditions un-
der which the indirect inference estimator has desirable large sample properties, such
as consistency and asymptotical normality.
A carefully designed indirect inference estimator can have good small sample prop-

erties, too, as shown by Gouriéroux, et al (2000) in the time series context. Because
our procedure is closely related to one given in Gouriéroux, et al (2000), we �rst review
that method in the context of a simple AR(1) model.
Suppose we need to estimate the parameter � in the AR(1) model

yt = �yt�1 + �t;

from observations y = fy0; y1; � � � ; yTg, where the true value of � is �0 which lies in
a compact set � of the stable region and j�0j < 1. It is well known that standard
procedures such as ML and least squares (LS) produce downward biased coe¢ cient
estimators of � in �nite samples. Using analytic techniques in a simple case, Hurwicz
(1950) demonstrated this AR bias e¤ect, showed that the bias does not go to zero as
the AR coe¢ cient goes to zero and that the bias increases as the AR coe¢ cient moves
towards unity. It is now well-known that this bias is accentuated in models with �tted
intercept and trends (Orcutt, 1969).
Various techniques have been proposed to correct the bias in the ML estimator of �

in the AR(1). Examples include Kendall (1954), Quenouille (1956), Efron (1979), and
Andrews (1993). Some of these methods, such as Kendall�s procedure, requires explicit
knowledge of the �rst term of the asymptotic expansion of the bias in powers of 1

T
.

The indirect inference method proposed by Gouriéroux et al (2000) makes use of
simulations to calibrate the bias function and requires neither the explicit form of the
bias, nor the bias expansion. This advantage seems important when the computation
of the bias expression is analytically involved, and it becomes vital when the bias and
the �rst term of the bias asymptotic expansions are too di¢ cult to compute explicitly.
The idea of indirect inference here is as follows. Given a parameter choice �, let

~yh(�) = f~yh0 ; ~yh1 ; � � � ; ~yhTg be data simulated from the true model, where h = 1; � � � ; H
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with H being the number of simulated paths. It should be emphasized that it is
important to choose the number of observations in ~yh(�) to be the same as the number
of observations in the observed sequence y for the purpose of the bias calibration.
The central idea is then to match various functions of the simulated data with those

of observed data in order to estimate parameters. Suppose QT is the objective function
of a certain estimation method applied to an auxiliary model which is indexed by the
parameter �. De�ne the corresponding estimator based on the observed data by

�̂T = argmax�2�QT (y); (11)

and the corresponding estimator based on the hth simulated path by

~�
h

T (�) = argmax�2�QT (~y
h(�)); (12)

where � is a compact set.
The indirect inference estimator is de�ned by

�̂
II

T;H = argmin�2� k �̂T �
1

H

HX
h=1

~�
h

T (�) k; (13)

where k � k is some �nite dimensional distance metric. In the case where H tends to
in�nity, the indirect inference estimator becomes

�̂
II

T = argmin�2� k �̂T � E(~�
h

T (�)) k : (14)

It is useful to de�ne the so-called binding function as

bT (�) = E(~�
h

T (�)):

In the case where the number of parameters in the auxiliary model is the same as that
in the true model (this is always the case when the auxiliary model is chosen to be the
true model), and bT is invertible, the indirect inference estimator is given by

�̂
II

T = b
�1
T (�̂T ):

The procedure essentially builds in a small-sample bias correction to parameter
estimation, with the bias being computed directly by simulation. To see this, suppose
the true value of � = 0:9, and the given estimator (like OLS in the present case) has
downward bias. For example, suppose �̂T = 0:85 is the realized value of the estimate.
We do not use the value 0.85 to estimate �, but instead use the value of � that yields
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the averaged estimated � of 0.85 from simulated data. Since the bias occurs in �̂T , it
should also occur in the binding function bT (�). Hence, with the bias correction that

is built into the inversion �̂
II

T = b
�1
T (�̂T ), the estimator is exactly �bT -mean-unbiased�

for �. That is, E(bT (�̂
II

T )) = bT (�0). Gouriéroux et al (2000) established conditions
under which the indirect inference estimator is �bT -mean-unbiased�, and related the
indirect inference estimator to the median unbiased estimator of Andrews (1993) and
the bootstrap estimator of Efron (1979).
In practice, three choices have to be made: H; the estimation criterion QT ; and

the distribution of the data used in the simulation. Of course, H cannot be in�nite
and the choice of H has to be made to ensure that E(~�

h

T (�)) is well approximated by
1
H

PH
h=1

~�
h

T (�), which will be guaranteed by the use of large H. When the true model
is easy to estimate (although the resulting estimator may be severely biased) � for
example, when the likelihood function has a closed-form expression �the estimation
criterion can be maximum likelihood applied to the true model itself. The simulation
results reported in Gouriéroux et al (2000) suggest that the indirect inference method,
when H = 15; 000 and estimation criterion is maximum likelihood, works as well as
the median unbiased estimator of Andrews (1993). Both these methods are, of course,
dependent on the validity of the assumed data distribution for the validity of the �nite
sample binding formula.
It is necessary to apply the Common Random Numbers (CRNs) technique during

the numerical optimization to enforce a smooth surface for the objective function. That
is, the H simulated paths are always obtained from a �xed set of canonical random
numbers, which are typically uniform variates or standardized normals.

3.2 Estimating panel models via indirect inference
In the context of dynamic panel models, the bias correction methods proposed by Kiviet
(1995), Bun and Carree (2005), and Hahn and Kuersteiner (2002) all work under linear
speci�cations and for a given �rst order lag structure. When the panel model becomes
more complicated, analytic derivations of the bias function become much more involved,
if not possible. Some recent generalizations for higher order dynamic structures and
nonlinear models have been developed by Lee (2005a, 2005b). Use of approaches to
bias elimination that require knowledge of the bias function imposes further challenges
as the model complexity increases. Moreover, when the model is nonlinear, GMM is
not readily available as the classical moment conditions are no longer valid.
As a general principle to correct for bias, indirect inference has the advantage

that it can be applied to many models and estimators. The present paper proposes
indirect inference in conjunction with the MLE as the baseline estimator and chooses
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the auxiliary model to be the true model.
When applying ML to estimate the linear panel model (1) with the observed data,

we obtain �̂
ML

NT de�ned by (2). Let the ML estimator of (1) with the h
th simulated

path, given �, be denoted by ~�
ML;h

NT (�), that is,

~�
h;ML

NT (�) = ((~yh�)
0A~yh�)

�1(~yh�)
0A~yh; (15)

where ~yh = (~yh1 ; � � � ; ~yhN)0 with ~yhi = (~yhi1; � � � ; ~yhiT )0, ~yh� = (~yh1�; � � � ; ~yhN�)0 with ~yhi� =
(~yhi0; � � � ; ~yhiT�1)0. Note that ~yh depends on (�). For the sake of presentation we simply
write ~yh = ~yh(�).
The indirect inference estimator is de�ned by

�̂
II

NT = argmin�2� k �̂
ML

NT � bNT (�) k; (16)

where k � k is a distant metric and bNT (�) is the binding function de�ned by

bNT (�) = E(~�
h;ML

NT (�)):

In practice, of course, we replace bNT (�) in (16) by 1
H

HP
h=1

~�
h;ML

NT (�). Since ML

generally has small variance in dynamic panel models because N is large, even small
values of H appear to be su¢ cient to ensure good �nite sample performance of the
estimator, as shown in the simulation study below.
To discuss the �unbiasedness�property, we impose the following condition.

Assumption 1: The binding function bNT (�), mapping from � to bNT (�), is uni-
formly continuous and one-to-one.

By construction when H =1; we have

E(bNT (�̂
II

NT )) = E(�̂
ML

NT ) = E(
~�
h;ML

NT (�0)) = bNT (�0):

By Assumption 1, bNT is invertible and hence b�1NT (E(bNT (�̂
II

NT ))) = �0; from which

we deduce that �̂
II

NT is �bNT -mean-unbiased�. Formally stated, we have the following
result.

THEOREM 1 If Assumption 1 holds, the indirect inference estimator de�ned in
(16) is �bNT -mean-unbiased�, that is,

b�1NT (E(bNT (�̂
II

NT )) = �0:
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Remark 1: The property of �bNT -unbiasedness�derived above does not impose
any restriction onN or T . This is in contrast with the existing bias-corrected estimators
which require either large N , or large T , or both. But the procedure does make use
of explicit distributional assumptions on data generation - here the normality of the
inputs �it in (1). However, as N ! 1; the binding function bNT (�) will depend on T
and certain moments of the data that will be consistently estimated in the simulations
as N ! 1; so that some robustness to the distribution of the input variables can be
expected in this case. Similarly, while limiting normality is obtained for the Han and
Phillips (2005) estimator when N !1 for �xed T; the expression for the variance in
that limit distribution depends on T and on certain moments of the data, which again
may be estimated consistently using the cross section observations. So, the methods
may be regarded as having similar forms of distributional dependence, at least for large
N:
Remark 2: The �bNT -unbiasedness�in general does not imply �mean-unbiasedness�

or vice versa. In the case where bNT (�) is a linear function in �, however, these two
concepts are equivalent. When bNT (�) is close to a linear function, which is perhaps a

practically relevant case, we may expect �̂
II

NT to be close to �mean-unbiasedness�.
We now discuss the issue of e¢ ciency and impose a smoothness assumption on the

function bNT , which seems mild under the given distributional assumption and the
restriction to the stable region �.

Assumption 2: The binding function bNT (�) and its inverse b�1NT (�) are continu-
ously di¤erentiable on �.

There is no formal extension of the asymptotically minimax limit theory in the
present framework of the panel model (1). Even for double index asymptotics as
both N ! 1 and T ! 1, where consistency and asymptotic normality for the
autoregressive coe¢ cient ML estimator applies, the model still involves an in�nite
number of nuisance parameters and we do not know of an extension of the Hájek-
LeCam asymptotically locally minimax theory (e.g. van de Vaart, 2000) to such cases.
Notwithstanding the absence of this asymptotically minimax limit theory, we may

mechanically apply the standard Cramér-Rao bound theory in this framework as fol-
lows. Under Assumption 2, the variance of an unbiased estimator of b(�) is no less
than

Bound(b) =

�
@b(�0)

@�

�2
I��;

where I�� is the element of the inverse of the information matrix corresponding to
parameter �. Note that the information matrix in this case concerns all the parameters
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in the model, viz., �; �1; � � � ; �N ; �2.
Any biased estimator of the parameter � can be considered as an unbiased estimator

of its mean. Let us assume that this estimator �̂ has mean bNT (�) which is dependent
only on � and the sample sizes.1 Then, according to the above we have

V ar(�̂) �
�
@bNT (�0)

@�

�2
I��;

and its �lack of e¢ ciency�can be measured by�
@bNT (�0)

@�

��2
V ar(�̂)

I��
:

Similarly the lack of e¢ ciency of any unbiased estimator �̂ of � may be measured by
V ar(�̂)
I��

.

Consider the indirect inference estimator �̂
II

NT associated with �̂
ML

NT : We have,

�̂
II

NT = b
�1
NT (�̂

ML

NT ):

Let us now assume that N is large, in which case the estimator �̂
ML

NT converges to a
limit bT (�0) as N !1: By virtue of the delta method appled to

�̂
II

NT = b
�1
NT (�̂

ML

NT ) = b
�1
NT (bNT (�0) + �̂

ML

NT � bNT (�0));

we have

V ar(�̂
II

NT ) �
�
@bT (�0)

@�

��2
V ar(�̂

ML

NT ); (17)

and hence
V ar(�̂

II

NT )

I��
�
�
@bT (�0)

@�

��2
V ar(�̂

ML

NT )

I��
: (18)

The asymptotic approximation (18) suggests that the indirect inference estimator
should inherit some the �e¢ ciency�properties of the initial estimator treated as an
estimator of its mean.
Remark 3: The change in the mean squared error (MSE) of ^�IINT over that of �̂

ML

NT

is due to the reduction (often substantial) that takes place in the bias of the estimator
and to the fact that the change in variance is often minor. In fact, the change in the

1This is justi�ed by formula (15) and holds for the present simple panel dynamic model.
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variance depends largely on @bT (�0)
@�

; as seen above. For
���@bT (�0)@�

��� > 1, ^�IINT has a smaller

variance than the initial estimator, and for
���@bT (�0)@�

��� < 1, ^�IINT has a larger variance

than the initial estimator. For the present model, the following expression for bT (�)
follows from the Nickell bias formula (6) and the asymptotic expansion of this bias for
large T given in Phillips and Sul (2004):

bT (�) = �+GT (�) =

�
�� 1+�

T�1 +O (T
�2) for j�j < 1

�� 3
T+1

for j�j = 1 : (19)

Note that although bT (�) is continuous in � as � passes through unity, its asymptotic
expansion as T ! 1 is not, and the bias expression given in (19) for the case � = 1
is exact. The derivative @bT (�0)

@�
= 1 + O (T�1) is well behaved and for large T has a

magnitude that is less than unity. Hence, according to this asymptotic expression, the
variance of ^�IINT should be greater than that of the initial ML estimator, an outcome
con�rmed in the simulations below.

4 Monte Carlo Results
This section reports the results of some simulation experiments examining the relative
performance of the proposed procedure against certain alternative methods. Following
Hahn and Kuersteiner (2002), the data are generated from the following linear dynamic
panel model,

yit = �i + �0yit�1 + �it;

where �it � iidN(0; 1), �i � iid N(0; 1), and �0 = 0; 0:3; 0:6; 0:9. �i and �it are
assumed to be independently distributed. The initial condition is

yi0j�i � N(
�i

1� �0
;

1p
1� �20

):

We choose N = 100; 200 and T = 5; 10; 20. For each combination of N and T , we
employ �ve methods to estimate �: ML, GMM, the method proposed by Han and
Phillips (2005), the bias-corrected ML method of Hahn and Kuersteiner (2002), and
the indirect inference method developed here. The design of the experiment is identical
to that in Hahn and Kuersteiner (2002) to aid comparisons. Although a linear model
is considered in these experiments so that GMM, the Han-Phillips method and the
Hahn-Kuersteiner method can be compared, it is worth pointing out that the indirect
inference approach can be applied to more complicated models. For GMM and the bias-
corrected ML, we simply report the results of Hahn and Kuersteiner (2002). For the
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indirect inference method, we �rst chooseH = 10 and later investigate the performance
of our estimator for larger values of H.
Table 1 reports the biases and RMSEs of all �ve estimates obtained from 5,000

replications. The following general results emerge. First, ML has serious bias problems
in all cases. In general, the ML bias becomes larger as � moves closer to unity or N gets
larger, but becomes smaller as T gets larger, all of which corroborates the asymptotic
theory.
Second, although GMM alleviates the bias problems in all cases, the biases remain

substantial when � is close to unity. Compared with ML, GMM generally has smaller
RMSEs. However, some exceptions to this occur when T is small and � is close to
unity. The large values of the variance and bias in cases where � is close to unity
are evidence of the weak instrumentation of GMM in these cases. It is interesting that
these e¤ects are strongly manifested even at � = 0:9 which is some distance from unity.
Third, the bias-corrected ML substantially alleviates the bias problems in all cases,

as it is designed to do, at least when T is modestly large. Like ML and GMM, the bias
in the bias-corrected ML becomes larger when � gets larger, but becomes smaller when
T is larger. Interestingly, the bias is still substantial in this bias corrected version for
� = 0:9. However, the bias-corrected ML has smaller RMSE than ML in all cases and
has smaller RMSE than GMM in almost all cases.
Fourth, the Han-Phillips estimator provides very good bias correction in all cases,

including those cases where � is close to unity. This is not surprising as the problem
of weak instrumentation is avoided in this approach. Like the three methods discussed
above, the RMSE becomes larger as � gets larger. Unlike these other methods, however,
the bias does not seem to depend on �. Moreover, the method dominates ML in terms
of RMSEs in all cases due to its ability to remove the bias. It also dominates GMM and
bias-corrected ML in terms of RMSE when � is close to unity except when T is large.
This result is interesting and somewhat surprising as the bias-corrected ML estimator
is asymptotically more e¢ cient than the Han-Phillips estimator.
Finally, the most important comparisons are between the indirect inference esti-

mates with the other four estimates. With H = 10, the indirect inference procedure
removes the bias more successfully than GMM, ML and the bias-corrected ML, but
less successfully than the Han-Phillips method. As shown later, however, with in-
creased values for H, the indirect inference method is much more e¤ective in removing
bias and has performance that is comparable with the Han-Phillips method in terms
of bias correction. Like Han-Phillips, the bias does not seem to depend on �. In
terms of RMSE, indirect inference estimates clearly dominate ML, GMM and the Han-
Phillips estimates in all cases and dominate the bias-corrected ML estimates in almost
all cases. The larger is �, the more substantial is the improvement of the indirect
inference method over the existing methods. For example, when T = 5, N = 100,
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� = 0:9, the RMSE of the indirect inference estimates is 85:5%, 57:2%, 82:9%, and
28% smaller than that of GMM, the bias-corrected ML, ML, and Han and Phillips�s
estimates, respectively. When T = 10, N = 200, � = 0:9, the RMSE of the indirect
inference estimates is 84:7%, 66:2%, 88:7%, and 41:8% smaller than that of the other
four estimates, respectively.
To investigate the sensitivity of the performance of the indirect inference method to

the choice of H, Table 2 reports the biases and the RMSEs when H = 10; 50; 250. With
large values of H, we expect indirect inference to have better �nite sample properties.
This is con�rmed in Table 2. When H = 250, the biases almost completely disappear.
However, the improvement in terms of RMSE is marginal, especially from H = 50 to
H = 250. This �nding suggests that the initial estimator (ML) indeed has a small
variance and hence a small value of H delivers satisfactory approximation of the bind-
ing function by H�1PH

h=1
~�
h;ML

NT (�). Consequently, despite being a simulation-based
estimation procedure, the indirect inference method is not computationally expensive
in the context of panel models.

5 Conclusions
Bias in the estimation of the parameters of dynamic panel models by standard methods
such as ML is generally not negligible in short (time span) panels and conventional
GMM approaches encounter di¢ culties of bias and variance when the autoregressive
coe¢ cient is close to unity, as it commonly is in practical work. The procedure we
propose here for reducing the bias involves the use of indirect inference to calibrate the
bias function and operates with only small increases in variance. Simulations show the
procedure to be highly e¤ective in the simple linear dynamic panel model. Although the
present paper implements the approach only in the context of a simple �rst order linear
dynamic panel model estimated by ML as the base estimation method, the technique
itself is quite general and can be applied in many other panel models and other base
estimation methods with little modi�cation.
Being a simulation-based estimation method, the indirect inference procedure is

computationally more involved than other methods. However, since the base estimator
employed here has a small variance, only a small number of simulated paths are needed
for the indirect inference estimator to have good �nite sample properties. Therefore,
the computational cost of the indirect inference procedure seems low and its �nite
sample gains substantial. The procedure has potential for even greater gains in cases
where the bias is known to be larger, as for instance in the case of dynamic panel with
incidental trends (Phillips and Sul, 2004).
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Table 1. Monte Carlo comparison of the bias and RMSE of the GMM estimator of
Arellano and Bover, the corrected ML estimator of Hahn and Kuersteiner (HK), ML,
the new GMM estimator of Han and Phillips (HP), and the indirect inference estimator
of � for the dynamic panel model. The number of simulated paths is set to be 10 for
indirect inference.

Case Bias in �̂ RMSE of �̂
T N � GMM HK ML HP II GMM HK ML HP II
5 100 0 -.011 -.039 -.1993 .0038 -.0297 .074 .065 .2041 .0877 .0635
5 100 0.3 -.027 -.069 -.2741 .0041 -.0384 .099 .089 .2779 .0948 .0868
5 100 0.6 -.074 -.115 -.3619 .0044 -.0291 .160 .129 .3650 .1021 .0761
5 100 0.9 -.452 -.178 -.4642 .0039 -.0282 .552 .187 .4667 .1111 .0799
5 200 0 -.006 -.041 -.2002 -.0003 .0117 .053 .055 .2026 .0624 .0433
5 200 0.3 -.014 -.071 -.2751 -.0004 .0068 .070 .081 .2771 .0676 .0770
5 200 0.6 -.038 -.116 -.3631 -.0008 .0233 .111 .124 .3647 .0729 .0564
5 200 0.9 -.337 -.178 -.4654 -.0021 .0273 .443 .183 .4668 .0792 .0616
10 100 0 -.011 -.010 -.0996 .0023 -.0198 .044 .036 .1044 .0512 .0407
10 100 0.3 -.021 -.019 -.1350 .0022 -.0147 .053 .040 .1387 .0572 .0404
10 100 0.6 -.045 -.038 -.1791 .0021 -.0046 .075 .051 .1818 .0626 .0392
10 100 0.9 -.218 -.079 -.2448 .0016 .0052 .248 .085 .2465 .0682 .0408
10 200 0 -.006 -.011 -.1001 .0004 .0038 .031 .027 .1025 .0366 .0253
10 200 0.3 -.011 -.019 -.1352 .0001 .0054 .038 .032 .1371 .0406 .0263
10 200 0.6 -.025 -.037 -.1789 -.0003 .0034 .051 .045 .1802 .0441 .0262
10 200 0.9 -.152 -.079 -.2439 -.0006 .0041 .181 .082 .2447 .0476 .0277
20 100 0 -.011 -.003 -.0497 .0012 -.0050 .029 .024 .0545 .0338 .0239
20 100 0.3 -.017 -.005 -.0663 .0012 -.0025 .033 .024 .0699 .0383 .0240
20 100 0.6 -.029 -.011 -.0859 .0011 .0018 .042 .024 .0883 .0423 .0224
20 100 0.9 -.100 -.032 -.1203 .0010 .-0044 .109 .037 .1215 .0460 .0209
20 200 0 -.006 -.003 -.1001 .0002 .0038 .020 .017 .0525 .0240 .0175
20 200 0.3 -.009 -.005 -.1352 .0000 .0054 .022 .017 .0683 .0270 .0174
20 200 0.6 -.016 -.010 -.1789 -.0002 .0034 .027 .018 .0869 .0296 .0163
20 200 0.9 -.065 -.031 -.2439 -.0002 .0041 .074 .034 .1204 .0317 .0152
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Table 2. Monte Carlo comparison of the bias and RMSE of the indirect inference
estimator of � for the dynamic panel model with di¤erent numbers (H) of simulated
paths. The number of simulated paths is set to be H = 10; 50; and 250:

Case Bias in �̂ RMSE of �̂
T N � H=10 H=50 H=250 H=10 H=50 H=250
5 100 0 -0.0297 -0.0082 0.0007 0.0635 0.0571 0.0570
5 100 0.3 -0.0384 -0.0181 -0.0074 0.0868 0.0817 0.0814
5 100 0.6 -0.0291 -0.0112 0.0005 0.0761 0.0706 0.0696
5 100 0.9 -0.0282 -0.0088 0.0000 0.0799 0.0777 0.0760
5 200 0 0.0117 -0.0043 -0.0002 0.0433 0.0413 0.0408
5 200 0.3 0.0068 -0.0126 -0.0102 0.0770 0.0742 0.0741
5 200 0.6 0.0233 -0.0023 -0.0003 0.0564 0.0503 0.0503
5 200 0.9 0.0273 -0.0058 -0.0030 0.0616 0.0540 0.0542
10 100 0 -0.0198 -0.0068 0.0009 0.0407 0.0357 0.0353
10 100 0.3 -0.0147 -0.0087 0.0004 0.0404 0.0376 0.0366
10 100 0.6 -0.0046 -0.0088 0.0001 0.0392 0.0386 0.0375
10 100 0.9 0.0052 -0.0066 -0.0011 0.0408 0.0412 0.0395
10 200 0 0.0038 -0.0030 0.0001 0.0253 0.0251 0.0248
10 200 0.3 0.0054 -0.0014 -0.0001 0.0263 0.0259 0.0258
10 200 0.6 0.0034 0.0003 0.0002 0.0262 0.0265 0.0264
10 200 0.9 0.0041 0.0027 0.0021 0.0277 0.0285 0.0286
20 100 0 -0.0050 0.0025 0.0010 0.0239 0.0233 0.0235
20 100 0.3 -0.0025 0.0028 0.0007 0.0240 0.0235 0.0237
20 100 0.6 0.0044 0.0025 0.0004 0.0224 0.0220 0.0221
20 100 0.9 0.0052 0.0032 0.0001 0.0209 0.0205 0.0209
20 200 0 0.0038 -0.0011 0.0003 0.0175 0.0166 0.0165
20 200 0.3 0.0054 -0.0003 0.0001 0.0174 0.0165 0.0164
20 200 0.6 0.0034 0.0010 0.0000 0.0163 0.0154 0.0153
20 200 0.9 0.0041 0.0022 0.0002 0.0152 0.0144 0.0142
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