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Abstract

This paper studies an alternative bias correction for the M-estimator, which is obtained by correcting
the moment equation in the spirit of Firth (1993). In particular, this paper compares the stochastic
expansions of the analytically bias-corrected estimator and the alternative estimator and finds that the
third-order stochastic expansions of these two estimators are identical. This implies that at least in
terms of the third order stochastic expansion, we cannot improve on the simple one-step bias correction
by using the bias correction of moment equations. Though the result in this paper is for a fixed number
of parameters, our intuition may extend to the analytical bias correction of the panel data models with
individual specific effects. Noting the M-estimation can nest many kinds of estimators including IV,
2SLS, MLE, GMM, and GEL, our finding is a rather strong result.
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JEL Classification: C10

1 Introduction

Asymptotic bias corrections are pursued to make estimators closer to the truth values. There are several ways
of achieving this goal including analytical corrections, jackknife, and bootstrap methods. This variety of bias
correction methods evokes the issue whether one method is preferable to the others at least on asymptotic
efficiency grounds. Hahn, Kuersteiner, and Newey (2004) deal with this issue. For the maximum likelihood

(ML) estimation, they show that a method of bias correction does not affect the higher-order efficiency of
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any estimator that is first-order efficient in parametric or semiparametric models. An ML estimator is a
class of M-estimator and this paper extends their intuition to a general class of M-estimator.!

Specifically, this paper considers an alternative bias correction for the M-estimator, which is achieved
by correcting the moment equation in the spirit of Firth (1993). In particular, we compare the stochastic
expansions of the analytically bias-corrected estimator (which is referred to one-step bias correction) and
the alternative estimator and find that the third-order stochastic expansions of these two estimators are
identical. This is a stronger result, since it implies that these two estimators do not only have the same
higher-order variances but also agree upon more properties in terms of their stochastic expansions.

In the literature (see Hahn and Newey (2004) and Ferdndez-Val (2004)), it has been discussed that
removing the bias directly from the moment equations has the attractive features that it does not use pre-
estimated parameters that are not bias corrected, though this alternative approach requires more intensive
computations. This paper, however, illustrates that at least for the third order stochastic expansion, there
is no benefit of using the bias correction of the moment equations over the simple one-step bias correction.
Though our result is for the fixed number of parameters, we conjecture this is also true for the panel data
models with individual specific parameters.

Obvious examples of the M-estimation include MLE, least squares and instrumental variable (IV) estima-
tion. Many other popular estimators can also fit into the M-estimation framework with appropriate definition
of the moment equations. It includes some cases of generalized method of moments (GMM, see examples
in Rilstone, Srivastava, and Ullah (1996)), and two-step estimators (Newey (1984)). More interestingly the
generalized empirical likelihood (GEL) also fits into this framework. This suggests that our approach can be
an alternative to Newey and Smith (2004) when one is obtaining the higher-order bias and variance terms of
GEL. From the finding of our paper, it follows that the stochastic expansions for the one-step bias corrected
estimator and the bias corrected moment equation estimator of GEL will be identical, at least up to the
third order.

Our paper is organized as follows. In Section 2 we derive the higher-order stochastic expansion of the
M-estimator and consider the one-step bias correction. Section 3 introduces the bias corrected moment
equations estimator and derives its higher-order stochastic expansion. Section 4 discusses the higher-order
efficiency properties of several analytically bias-corrected estimators. We conclude in Section 5. Primitive
conditions for the validity of the higher-order stochastic expansions and mathematical details are discussed

in Appendix.

2 Higher Order Expansion for M-Estimator
Consider a moment condition

E[s(z,00)] =0 (1)

I This possible extension is noted in Hahn and Newey (2004).



where 5(z;,0) is a known k x 1 vector-valued function of the data and a parameter vector § € © C R* and

z; may include both endogenous and exogenous variables. The M-estimator is obtained by solving
I ~
%Zs(zi,@ =0. (2)
=1

Examples for this class of estimators include the MLE, the least squares and IV estimation. In the MLE,
s(z;, 0) is the single observation score function. For the linear or nonlinear regression model of y; = f(X;;60)+
€, we set s(z;,0) = w (yi — f(X;;0)) and z; = (y; X!)' for a known function f(-). In the linear IV
model, we have s (z;,0) = w;(y; — X[0) and z; = (y; X! w

!
%

) for some instruments w; with dim(w;) = dim(6).
Two-step estimators such as two-stage least squares, feasible generalized least squares (GLS) and Heckman
(1979)’s two-step estimator also fit into this framework (see Newey (1984)). Rilstone, Srivastava, and Ullah
(1996) provide some special cases of GMM estimators that can be put into the M-estimation but the examples
are not restricted to those. Actually the popular two-step GMM estimations and the generalized empirical
likelihood estimations (GEL, Newey and Smith (2004)) can also fit into the M-estimation. Partly motivated
with this wide applicability, we study the stochastic expansion and the bias correction of the M-estimator.

We obtain the higher order stochastic expansion of the M-estimator using the iterative approach used
in Rilstone, Srivastava, and Ullah (1996) up to a certain order. This approach is convenient analytically
and straightforward since the estimators are expressed as functions of sums of random variables. Edgeworth
expansion can be considered as an alternative whose validity has been derived in Bhattacharya and Ghosh
(1978) but the stochastic expansion approach is noted as a much simpler approach. Moreover, the main
purpose of this paper is to provide the comparison of several estimators based on the higher-order variance
(O(n~1) variance). Noting rankings based on the higher-order variances in a third-order stochastic expansion
are equivalent to rankings based on the variances of an Edgeworth expansion as shown in Pfanzagl and
Wefelmeyer (1978) and Ghosh et. al.(1980) and discussed in Rothenberg (1984), it suffices to use the simple
stochastic expansions for our purpose.

Here we borrow Rilstone, Srivastava, and Ullah (1996)’s notation. We denote the matrix of v-th order
partial derivatives of a matrix A(f) as VVA(0). Specifically, if A(f) is a k x 1 vector function, VA(#) is
the usual Jacobian whose [-th row contains the partial derivatives of the I-th element of A(f). VVA(9) (a
k x k¥ matrix) is defined recursively such that the j-th element of the I-th row of V' A() is the 1 x k vector

ap;(0) = 8@}’[1(9)/80', where afjfl is the I-th row and the j-th element of V"' A(f). We use ® to denote
. o A(0)
00 ® 00" ®...000"

v Kronecker product of 86/

a usual Kronecker product. Using this Kronecker product we can express VVA() =

Finally, we use a matrix norm [|A|| = \/tr(A’A) for a matrix A.

Before we derive the second order expansion of the M-estimator to obtain the second-order bias ana-
lytically, some definitions are introduced. Denote H;(0) = E [Vs(z;,0)], Ha(0) = E [V7s(z;,0)], Q(0) =
(=E[Vs(z;,0)])"" and let Hy, = Hy(0o), Hy = Ha(0y), @ = Q(0y). The following notation is also used

later; H1(0) = 1577 Vs (2;,0), Ho(0) = 257 Vs (2,0), Q(0) = (—Hy(0))~Y, Hy = Hy(0,), H> =

Hy(0o), and Q = Q(f). Also define J = ﬁzg;ls(z‘iﬁo)’ V= ﬁzyﬂ (Vs (2i,00) = E[Vs (i, 00))),
W= (Vs (2,00) — E [Vs (2:,00)]).



Lemma 2.1 Suppose {z;} is iid, ¢ is in the interior of © and is the only 6 € © satisfying (1), and the M-
estimator 0 defined in (2) is consistent. Further suppose that (i) s(z,0) is k-times continuously differentiable
in the neighborhood of 0y, denoted by ©g C © for all z € Z, k > 3 with probability one; (iia) VVs(z,0) is
integrable for each fired 0 € ©g, v ={0,1,2,...k}, kK > 3 and (iib) E [V?’s(z,ﬁ)] is continuous and bounded
at Oo; (iii) H% S Vs (2,0) — E[V's (zi,ﬁo)]H =o0,(1) for 0 =0y +0,(1) and v =1,2;

(iv) % S (V?s (2,0) — Ha(0)) — ﬁ S (Vs (21,00) — Ha (00)) = oy (1) for 8 = 6y + 0,(1);

(v) Q(0o) exists, i.e. E[Vs(z;,00)] is nonsingular; (vi) J = Op(1); (vit) V = Op(1); (viii) W = O,(1).
Then we have v/n (5 — 00) =QJ+0, (\/ﬁ) and moreover

NG (@ - 90) = QJ+Q(VQJ + s H2 (QJ © QJ)) + Op(n).

This result and the following Lemma 2.2 are available in Rilstone, Srivastava, and Ullah (1996) but we
provide these and their proofs for completeness. Some of these results will be used in later discussion. The
proofs to this lemma and others are presented in Appendix B. From this result, the higher order bias of [l
is obtained as

.o 1 1
Bias(0) = —Q (E VQJ] + §H2E [(QJ® QJ)]) .

n

Defining d;(0) = Q(0)s(z;,0) and v;(0) = Vs (z;,0) — E[Vs(z;,0)] and letting d; = d;(6p) and v; = v;(6o),
it is not difficult to see that Q (E[VQJ] + tH2E [(QJ ® QJ)]) = Q (E [vid;] + $H2E [(d; ® d;)]) as shown
in Lemma 2.2 and thus we put B(0) = Q(0) (E [v;(0)d;(0)] + 3 H2(0)E [d;(0) @ d;(6)]).

Lemma 2.2 Suppose (1) holds and {z;}]_, are iid.
Then, E[VQJ]+ %Hg [QJ ® QJ] = E [v;d;] + %Hg [d; ® d;], where d; = Qs(z;,00) and v; = Vs (z;,00) —
E [VS (ZZ', 90)]

Therefore, we can eliminate the second-order bias of the M-estimator 9 by subtracting a consistent

estimator of the bias. Now let 5170 denote the bias corrected estimator of this sort defined by

B(0), (3)

Q) ( > B(0)di(0) + 5 H(0)- Y (di(0) cE<9>)> (4)
i=1 i=1
for (Z(H) = Q(0)s(z,0) and 7; (§) = Vs (2;,6). In particular, we can put 6 = 6. In this sense, Oy is a
two-step estimator.
To characterize the higher order efficiency based on the higher-order variance (O(n~1) variance) of the

bias corrections, we need to expand the M-estimator to the third-order. We use some additional definitions:

H; (0) = E[V?s(2,0)], H; () = Z V?5(2i,0), Hs = Hz (0), W3 = = 3= (V?s (2i,60) — E [V?s (2, 00)]).-
i=1

Also put a_1/2 = QJ, a—1 = Q (Va 1/2 + H2 ((Z 1/2 ®a_ 1/2)) and

a_z2=QVa_1+3QW (a_i2 ® a71/2)+2QH2 (a_1/2®a_1+a_1®@a_1/2)+gQH;z (a_1/2®a_1/2 @ a_1/2)
for brevity. First consider



Lemma 2.3 Suppose {z;} is iid, ¢ is in the interior of © and is the only 6 € © satisfying (1), and the M-
estimator 0 that solves (2) is consistent. Further suppose that (i) s(z,0) is k-times continuously differentiable
in a neighborhood of 0y, denoted by ©g C © for all z € Z, k > 4 with probability one; (iia) VVs(z,0) is
integrable for each fized 0 € Og, v ={0,1,2,...k}, K > 4 and (iib) E[V*s(z,0)] is continuous and bounded
at Oo; (iii) ﬁ S (V33 (2:,0) — H3 (0)) — ﬁ S (VPs(zi,00) — Hs (60)) = op (1) for 6 = 0y + 0p(1);
(v) Q is nonsingular; (v) J = O,(1); (vi) V = O,(1); (vii) W = O,(1); (viii) W3 = O,(1);

(i) /10 —00) = a 1o+ J=a_1+ O, (}).

Then we have \/n (/0\ - 00) =a_i/2+ ﬁa_l + %a73/2 + Op(n_3/2)-

In the following section, we propose an alternative one-step estimator which eliminates the second-order

bias by adjusting the moment equation inspired by Firth (1993).

3 Bias Corrected Moment Equation

Here we consider an alternative higher order bias reduced estimator that solves a bias corrected moment
equation. This idea is proposed in Firth (1993) for the ML with a fixed number of parameters and exploited
in Hahn and Newey (2003) and Ferandez-Val (2004) for the nonlinear panel data models with individual
specific effects. We refer this estimator to Firth’s estimator.

To be more precise, consider

n

0= -3 s(20) — cl0) (5)
for a known function ¢(6) that is given by
c(0) = Q(0)"'B(0) = %H2(9)E [Q(0)s(2:,0) ® Q(0) s(2:,0)] + E [V (2, 0) Q(0)s(zi,0)] - (6)

In the ML context, Firth (1993) shows that by adjusting the score function (he refers this as a modified
score function) with the correction term defined by the product of the Fisher information matrix and the
bias term. c¢(f) has the same interpretation in the ML, since —Q(6)~! is the Hessian matrix and hence
Q(0)~1 is the Fisher information in the ML. Therefore (6) is a generalization of Firth (1993)’s idea to the
M-estimation. In general ¢(f) is unknown and hence to implement this alternative estimator, we need to

estimate the function ¢ (). We use a sample analogue of (6) as

a9 = QO)'B(®) (7)
[vs (21,0) Q(0)s(z, 9)} .

Il
N =
)
[\
=
N
| —
3
S
=
2
R
=
®
o)
=
2
R
=
~—
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S|~
iagh

Now we estimate 6y by solving
0= lEn:s(z 0) — l’c\(ﬁ) (8)
- n (3] )

: n
=1

and claim that this eliminates the second order bias of 8 that solves (2) under following conditions;



Assumption 3.1 (i) {z; :i=1,...,n} are iid; (i) s(z,0) is k-times continuously differentiable in a neigh-
borhood of 0y, denoted by Oy for all z € Z, k > 4; (iii) E [supge@O ||Vvs(z,9)||2} <oowv=1{0,1,2,...5},
k > 4; (iv) © is compact; (v) Oy is in the interior of © and is the only 0 € © satisfying (1); (vi)
E [HVUS(Z,QO)Hﬂ <o forv=1{0,1,2,...,7},k > 3.

Assumption 3.2 For 0 € Oy, E [%} s nonsingular.
or alternatively instead of Assumption 3.1,
Assumption 3.3 (i) {z;:i=1,...,n} are iid; (i1) V's(z,0) satisfies the Lipschitz condition in 0 as
IVUs(z,01) — VUs(z,02)|| < By(2) |01 — 02| V01,02 € O

for some function B,(-): Z — R and E [BU(~)2t+5] < oo, v=1{0,1,2,...k}, with positive integer t > 2 and
for some § > 0 and k > 4 in a neighborhood of 0y, (iii) E [supgeeo ||Vvs(z,0)||2t+6} <oo,v={0,1,2,...K},
K > 4 with positive integer t > 2 and for some § > 0; (i) © is bounded; (v) O is in the interior of © and is
the only 0 € © satisfying (1).

Under Assumption 3.1-3.2 or Assumption 3.2-3.3, the following three conditions are satisfied (see Lemma

A.9 in the appendix).

Condition 1 (i) &(80) = Op(1):(ii) €(60) = c(60) + Oy (= ).

Condition 2 V¢(0) = O,(1) around the n='/2 neighborhood of 0.
Condition 3 V*¢(0) = O,(1) around the n=/? neighborhood of 0.
Now we are ready to present one of our main findings.

Proposition 3.1 Suppose 0 solves
1 & . 1 -
OZ—ZS(ZZ',H)——/C\(H ), 9)

n < n
i=1

where ¢(0) is given by (7) and that 0" is a consistent estimator of 0. Further suppose that Condition 1-3

and Condition (i)-(viii) in Lemma 2.1 are satisfied, then we have

V(8 —00) = @1+ =0 (Vs + L (@191 - clon)) +0, (1),

where c(0o) = $H2F [Qs(z;,00) ® Qs(zi,00)] + E [Vs (2,00) Qs(zi,00)] and hence the second-order bias of
6" is Bias(0 ) = LE [Q (VQJ + 1 Ha (QJ ® QJ) — ¢(60))] = 0.

This concludes that we can eliminate the second order bias by adjusting the moment equation as (8) and
it is a proper alternative to the analytic bias-correction of (3). Now we derive the higher order expansion of
the Firth’s estimator up to the third order. For this, we need an additional condition that is satisfied under

Assumption 3.1-3.2 or 3.2-3.3 with k > 5 as shown in Lemma A.11 in the appendix.



Condition 4 (i) V¢(0y) = Ve(bo) + O, ( ;(ii) V3E(0) = O,(1) around the n='/? neighborhood of 0.

1

%)
Recall that c(6) = Q~1()B(6) and ¢(8) = Q(A)~'B(6) and we obtain

Proposition 3.2 Suppose 0 solves 0 = %ZZ;I s (zi, 9*) - %5(9*), where ¢(0) is given in (7) and that 0

is consistent. Further suppose that Condition 1-4 and Condition (i)-(viii) in Lemma 2.3 are satisfied and

assume \/ﬁ(g— o) = a_1/2 + ﬁ (a—1 — B(60)) + Oy (£). Then, we have

(o -a)

~ 10
=a_1/2+ 7 (a-1 — B(0o)) +5 (a—3/2 = VB(o)a_1/2 — vn(B(bo) — 3(90))) +0,(n~?) 1o

4 Higher Order Efficiency

Asymptotic bias corrections can provide estimators that have better bias properties in the finite sample.
There are several ways of achieving these bias corrections including analytical corrections that we focus on
in this paper, jackknife and bootstrap methods. This abundant ways of bias correction methods evoke the
issue which method is preferable to others at least on asymptotic efficiency grounds. Hahn, Kuersteiner,
and Newey (2004) deals with this issue. For the maximum likelihood (ML) estimation, they show that
the method of bias correction does not affect the higher-order efficiency of any estimator that is first-order
efficient in a parametric or semiparametric model. The ML estimator is a class of the M-estimator and
here we try to extend their intuition to a general M-estimator. In this section we compare the higher order
efficiency of several first-order efficient bias-corrected estimators by comparing the higher order variance,

which is defined by the O (%) variance in a third-order stochastic expansion of the estimator.

4.1 Third Order Expansion of the Bias-Corrected Estimator

To compare with the estimator of interest 0*, first we consider a bias-corrected estimator 556 defined in (3)
as Ope = 0 — %é(@) and observe that E(/H\) = Q(A)2() from (4) and (7). We also consider its infeasible
version 0, as 0, = 0 — 1B (9), where the function B(f) is constructed as B(6) = Q(6)c(6) provided that both
E(@) and B(@) are consistent estimators of the higher order bias term B(6y) = Q(6o)c(6o). Note that for 8

between § and 0y, the mean value theorem gives us
e(B) — cl0) = Ve(0) (8- 09) = 0,(1)0, (1/v/n) = 0, (1)

under Condition 2 and since 6 — g = O, (ﬁ) Also we have

[60) ~ 00| = ||e®) ~ @) + ||c(@) ~ c(0)
< sup [e6) @) + @) = c(00)|| = 0y (1) + 0(1) = 0, (1)



by Triangle Inequality, Lemma A.7, and the continuity of ¢(6) at 6y (applying the Slutsky theorem) and hence
both B(#) and B(f) are indeed consistent estimators of the higher order bias noting Q(6) = Q(6o) + 0,(1)
by the continuity of Q(0) at 6y and @(5) = Q(0o) + 0p(1)%. Now from the result of Lemma 2.3, it follows
that

Vi~ 00) = Vi@ - 0) - %B@
a_ 1/2+fa 1+ a 3/2 + Op(n 3/2)

— L B(b,) - ﬁVB(é)O)(H —6o) —

v V2B(6)((6 — 60) ® (6 — 69))

2f
and hence
Py 1 1
\/E(Gb — 90) = a,1/2 + % (afl — B(ao)) + E (a,3/2 — VB(GO)a,l/g) + Op(n_3/2), (11)
since /(6 — 0) = a_i/2+0, (ﬁ) and V2B(0) = V?B(6y) + 0,(1) = O,(1) by the Slutsky theorem, from
which we have ﬁV2B(F6’V)((5 —00) ® (0 — 0)) = Op(n=3/2). Similarly for ., consider

e —00) = /(@ — ) — %E(@) (12)
a_ 1/2+fa 1+ a 372 + Op(n 3/2)

*ﬁB(%) - ﬁVB(QO)(G —00) — 5=

From (12) and the following results (that hold under Assumption 3.1-3.2 or 3.2-3.3 as shown in Lemma A.12
in the appendix),

V2B(0)((0 — 00) ® (0 — 6)).

Condition 5 E(GO) = B(6p) + O, (ﬁ)
Condition 6 VB(6y) = VB(6y) + O, <%)

Condition 7 V2B(f) = 0,(1) around the neighborhood of 0.

We obtain
Vin(Bre ~ 00) (13)
CL_l/Q + % (a,1 — B(e())) + % (a_3/2 — VB(G())G,_l/Q — \/E(E(go) — B(@o))) + Op(n_3/2)

noting %vé(eo)@ — 09) = L1V B(0) (a,1 240, (ﬁ)) = LVB(fy)a_y /2 + Op(n~3/2) by Condition 6
and noting VQB(O)((/O\— 0p) ® (5— 00)) = O,(n=3/2) by Condition 7 and 0—00 = Op (ﬁ) Comparing
(10) and (13), we conclude that /n (9 - 00> and \/n (gbc - 90> are identical up to Op(+) order terms.

This means that § and 9;,0 have the same higher order variances at least.

2For a formal proof, see the result of (75) in the proof of Lemma 2.1 in the appendix.



4.2 Higher Order Variances

For a three term stochastic expansion of an estimator such as

. 1
V(0 —6g) =T 15+ T 1+ ET73/2 +0p(n37?),

1
Vn
the higher-order variance is given by

1
Aé =¥+ —E,
n
where  =Var[T_y /o] and = = (Var[T1] + B [(VATo1 +Tg/a) T/, | + B [Toajo (VAT 1 + Tos)']).
From (10), (11), and (13), we obtain the higher order variances of three alternative estimators, denoted by

A@b, A@bc, and Ay, respectively as®

E [a,magm} +1E[(a_y — B(6y)) (a_1 — B(6y))]

A, = taE [a—l/z (a-s/2 = VB((’O)a—l/z)/} +4F [(a—sm = VB(fo)a_12) al—l/Q}

+LE [Vna_is(a_y — B(6))] + LE [\/ﬁ (a_y — B(0,)) a'_m}
Mo = A~ B [ayava(BO) ~ BOWY| ~ B [V(B(00) - BOo))aly,0] (14)
Age = A

The result of (14) reveals that the higher order variance of Ebc has additional terms compared with 51, due to
the fact that we use the sample analogue of the second order bias, unless F [a,l/g Vi(B(6,) — B(@O))’} =0.
It is quite remarkable that comparing the third order expansions of (10) and (13), we have concluded that

2By —0') = 0,(1). (15)

This is a stronger result, since it implies that these two estimators do not only have the same higher order
variance but also agree upon more properties in terms of their stochastic expansions. In the literature (see
Hahn and Newey (2003) and Ferdndez-Val (2004)), it has been argued that removing the bias directly from
the moment equations has the attractive features that it does not use pre-estimated parameters that are not
bias corrected, though this alternative approach requires more intensive computations since it requires to
solve some nonlinear equation. From the results of (10) and (13), this paper concerns that at least for the
third order stochastic expansion comparison, there is no benefit of using such bias correction of the moment
equations over the simple bias-corrected estimator. Though our result is for the fixed number of parameters,

we conjecture this is also true for the panel data models with individual specific parameters.

4.3 Comparison of Alternative Estimators

To have a better understanding for the result of (15). Here we compare several versions of bias-corrected
estimators though these are infeasible in most of cases. First, let 6, be the solution of 0 = IS 1 s(z,0) —

Lc(9) and we also define

0y =0 — Q(0)c(d) and 05 = 0 — Q(0)2(0).

3The analytic forms of these variances are given in the appendix (see Appendix C).



From the previous results of (10) and (13), it is not difficult to see that

*

V(0 =00) = a_y jp+ 7= (a1 — B(6h)) +

o~

Vn(02—6o) = a—1/2+ﬁ (a1 — B(bo)) +

o~

Vi(0s—00) = a_y jp+= (a—1 — B(6o)) +

(a—s/2 = VB(Bo)a—1/2) ~QVB(6y) + O, (n~""?)
(CL_3/2 — VB(HO)G_l/Q) —% n(Q(0,) — Q(8,))c(0,) + Op(n—S/z)
(a—s/2 = VB(0o)a—1/2) =5 vVnQ(0,) (€(00) — c(00)) —|—Op(n_3/2).

Sl= 3= 3=

Now note that Q(6o) = Q(60) + ﬁQ(HO)VQ(GO) + Op(L) from (79) and hence

Vi(Q(80) = Q(B0))e(8o) = Q(00)V Q(Bo)c(B0) + Op (1/n) = Q(B0)V B(Bo) + O, (1/n).

This implies that /(A2 — 6o) and /(6; — 6y) have the same asymptotic expansion up to O, () order.
Now from Lemma B.1, we derive
ViIQ(80) (@(80) — c(60) = v/ (Q(60)2(00) — Q(60)e(00)) — v (Q(B0) — Q(69)) (60)
= Vi (B(8o) - B(6o)) + QVB (60) + 0, (1/v/n)

which implies (6 — 60) = (03 — 6) + QVB (6,) + O,(n=3/2). To sum up, together with previous

results we conclude

It illustrates that using QA) () rather than Q(-) plays a critical role for equating the stochastic expansions (up
to the third order) of the bias-corrected estimator and the estimator that solves the bias-corrected moment
equation.

More interestingly we consider the iteration of the bias correction. Hahn and Newey (2004) discusses
the relationship between the bias corrections of moment equations and the iterated bias correction. The
iteration idea is that one can update B several times using the previous estimator of f. To be more precise,
denoting B (0) as a function of fff we can \iv\riAtE_tlhe oneAsltep 1,3\ias—corrected estimator as gic =0-B (9) /n.
The k-th iteration will give us 6,, = 0 — B(6,, )/n ( 0. = ) for k = 2,3,.... If we would iterate this
procedure until achieving the convergence, we will obtain 5:2 =0 E(@:Z) /m, which imply that 5;2 solves
(note B(6) = Q(0)e(0))

SO 1. 1 N A~ 1.
0=Q0) 00— ~e0) = — 31,5 (2.0) + Q(O) @ - 0) — ~(0), (16)

n n

where the second equality is from the definition of 6 in (2). Noting Q(#)~! = — L Vs (2,0), if s(2,0)
is linear in 6 then we find that (16) is the same as (8): the bias corrected moment equation and hence
Oy

. is exactly same with 6 . Otherwise (16) is an approximation of (8). From this we conclude that the

fully iterated bias-corrected estimator 5;: can be interpreted as the solution to an approximation of the
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bias-corrected moment equation (8). Similarly with (12), for 6 between 5:: and 6y, we can show that

V1O, — 00) = /(8 — 6p) — J=B(0,.)

a_y/2 + ﬁa—l +La_z)

~ = B(00) = JzVB(00) By — 60) — 55V BO)((Bye —00) @ By — 00)) + Op(n=*2)
=a_i+ ﬁ (a—1 — B(6o)) + = (a73/2 —VB(0o)a_1/2 — v/n(B(bo) — 3(90))) + Op(n=3/?)

using Condition 5, 6, and 7 and /n (@;: - 90) = QJ+0, (1/y/n). This result confirms that \/ﬁ(@fj —Oye) =

O, (n3/2), which actually holds for all @’fc (k=2,3,...).

Noting this equivalence of the higher order expansioils for 5;: and /19\;6 at least up to Atlhe third order term,
one would expect that the higher order expansion of § will be equivalent to that of 6,, at least up to the
third order and we confirm this intuition in this paper. However, as observed in some Monte Carlo examples
of Hahn and Newey (2004) and Ferdndez-Val (2004), the iterative bias correction can lower bias for small
samples and so can the bias correction of the moment equations. This suggests that the comparison between
the one-step bias correction and the method of correcting the moment equation (or the fully iterated bias
correction) should be based on the stochastic expansions higher than the third order. As a related estimator,
Hahn and Newey (2004) discusses the asymptotic equivalence of the bias-corrected moment equation method
to Woutersen’s (2002) approach and hence we conjecture that Woutersen’s (2002) estimator will not improve

over the simple one-step bias correction either at least in the third order stochastic expansion sense.

5 Conclusion

This paper considers an alternative bias correction for the M-estimator, which is achieved by correcting the
moment equation in the spirit of Firth (1993). In particular, this paper compares the stochastic expansions
of the analytically bias-corrected estimator (which is referred to one-step bias correction) and the alternative
estimator and finds that the third-order stochastic expansions of these two estimators are identical. This
implies that these two estimators do not only have the same higher order variances but also agree upon more
properties in terms of their stochastic expansions.

We conclude that at least in terms of the third order stochastic expansion, we cannot improve on the
simple one-step bias-correction by using the bias correction of the moment equations. Though our result is
for the fixed number of parameters, we conjecture this is also true for the panel data models with individual
specific parameters. The intuition is that the fully iterated bias-corrected estimator can be interpreted as
the solution of an approximation to the bias corrected moment equations and the iteration will not improve
asymptotic properties in general and neither will the alternative estimator. We have verified this intuition

in this paper. Noting the M-estimation framework is quite general, this is a rather strong result.

11



Appendix

A Technical Lemmas and Proofs

A.1 Some Preliminary Lemmas

Lemma A.1 (Uniform Weak Convergence Theorem with Compactness) Suppose (i) {z; :1=1,...,n} are iid; (ii)
m(z,0) is continuous at each 6 € © for all z € Z with probability one;(iii) E [supyee [|m(zi,0)||] < oo; (iv) © is
compact.

Then, E [|[m(z:,0)||] is continuous for all § € © and supyee || = >0, m (2i,0) — E [m (2:,0)]]| = op(1).

Proof. This result is implied by Lemma 1 of Tauchen (1985) or can be verified by showing the stochastic equicontinu-
ity of {2 3" | (m(2:,0) — E[m (2:,0)]) : n > 1} for 6 € © as in Newey (1991) observing that E [supyce |[m(z:,0)||] <
oo is stronger than the Lipschitz condition used in Newey (1991). The continuity of E [||m(z;,0)]|] is obtained from
the Dominated Convergence theorem with the dominating function supycg ||m (2i,6)|| < co. Here we provide an
alternative proof for the stochastic equicontinuity. We use the following definition of the stochastic equicontinuity:

Definition A.1 {M,(0)|n > 1} is stochastically equicontinuous on © if Ve >0 36 > 0 such that

lim P <sup sup || Mn(6") — M (6)]| > 5) <e.
n—00 0€O 9'eB(0,5)

Now define My (0) = = 7" m (2i,0) — E[m (2:,0)] and Yis = supgce SUPg/c p(g,5) lm (2i,0") — m (z:,0)|. Note
E[Yis] < 2F [supyeg |lm(zi,0)|]] < oo by Condition (iii). We claim that E[Y;s] — 0 as § — 0 by noting Yijs — 0
as 0 — 0 with probability one, since Condition (ii) and (iv) implies uniform continuity. Furthermore, Yis <
2supyee [[m(zi,0)|| V6 > 0 and E [supyee [[m(zi,0)||] < oo by Condition (iii) and hence from the dominated conver-
gence theorem, the claim follows. Now let € > 0, then

im0 P (supeee SUPyr(0.5) | Mn(0) — Mo (0)]] > e) <Tmn P (20, (Yis + E[Yis]) > €)
<limn—oE [L 30 | (Yis + E[Yis])] /e = 2E[Yis]/e — 0 as § — 0,

n i=1
where the first inequality follows by Triangle inequality, the second holds by Markov inequality, and the last equality
holds by E[Yis] — 0 as 6 — 0. This proves M, (6) is stochastically equicontinuous and the uniform convergence
follows noting Condition (iii) is sufficient for the pointwise weak convergence. This is proved when © is bounded (not
necessarily compact) in the proof of Lemma A.2. ®

Lemma A.2 (Uniform Weak Convergence Theorem without Compactness) Suppose (i) {zi:i=1,...,n} are iid;
(ii) m(zi,0) satisfies the Lipschitz condition in 0 as ||m(z;,01) — m(z;, 02)| < B(zi) |61 — 02]|, V01,02 € O for some

function B(-): 2 — R and E [B(-)*"’] < oo; (iii) E [SUPee@ Hm(zi,G)HHS] < oo for some § > 0; (iv) © is bounded.
Then, ﬁ > (m(2:,0) — E[m (2,0)]) is stochastically equicontinuous and thus
suPgeo || 5 207y m (20, 0) — E [m (2, 0)]]| = 0p(1).

Proof. From condition (ii), we note that m(-,-) belongs to Type II class in Andrews (1994) with envelopes given
by max(supycg |[|[m(-,0)|, B(-)) and hence satisfies Pollard’s entropy condition by Theorem 2 in Andrews (1994),
which is Assumption A for Theorem 1 in Andrews (1994). Condition (iii) implies Assumption B of Theorem 1 in
Andrews (1994). Condition (i) is stronger than Assumption C for Theorem 1 in Andrews (1994) and hence stochastic
equicontinuity follows. Now noting Condition (iii) is sufficient for pointwise weak convergences of = 3"  m (z;,6)
to E[m(z,0)] for all # € © and combining this with the stochastic equicontinuity result, we have the uniform
convergence as assuming © is bounded. To be more precise, first, note that the stochastic equicontinuity of
ﬁ S (m(2:,0) — E[m (2,0)]) implies the stochastic equicontinuity of £ 37" | (m (2i,0) — E[m (2:,0)]). Now de-
fine v, (0) = L 3" | (m (2i,0) — E[m (2i,0)]) and let € > 0 and take a § such that

n

limy,— 00 P (supee@ SUPg/ ¢ p(g,5) [V (0") — vn(0)] > E) <e.
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Such a § exists by the definition of the stochastic equicontinuity. Now note that from the boundedness of ©, we can
construct a finite cover of © as {B(0;,6) : j =1,...,J}. Then it follows

m7L4><><>P' (Sup0’€® an(el)n > 28)
< T oo P (max; <y (5upgrca, o) 100 (8) = 0a(0) + l0a(05)]) > 2)
< limy— oo P ( maxj<y SUPyre B (0, ) |vn (0") — vn(6;)] > 8) + limp— oo P (max;<s [|[vn (0;)|| > €)

< Tt oe P (5UDgeo UPy e 5(0,5) [0 (0) = 0n(O)] > €) + Tinoe P (maxy s [0 (6,)] > €) < &,

where the first inequality is from Triangle Inequality and by the construction of {B(8;,0) : j = 1,...,J}. The last
inequality comes from the stochastic equicontinuity of v, () and the pointwise weak convergence of v, () and hence
the uniform convergence result follows. m

In addition to the assumption of 0 being consistent, we provides two alternative primitive conditions that satisfy
the higher level conditions used in Lemma 2.1. The first possible set of primitive conditions is

Assumption A.1 (i) {zi}_, are @d; (ii) s(z,0) is k-times continuously differentiable in a neighborhood of 6o,
denoted by O¢ for all z € Z, k > 3 with probability one; (iii) E [supgeeo IVYs(z, 0)”] <oo,v=1{0,1,2,...k}, Kk > 3;
(iv) © is compact; (v) 0o is in the interior of © and is the only 0 satisfying (1).

Assumption A.2 E [HV“s(z,HO)H?‘] <oo,v=40,1,2,...5}, k > 3.
Assumption A.3 E[Vs(z,00)] is nonsingular.
Instead of Assumption A.1, alternatively we may assume
Assumption A.4 (i) {z:},_, are iid; (1)) VVs(z,0) satisfies the Lipschitz condition in 6 as
IVYs(z,01) — V s(z,02)|| < Bu(2) |61 — 02]] Vb1,02 € Og

for some function B,(-): Z — R and E [BU(-)2+5] < oo, v=1{0,1,2,...k} in a neighborhood of 0y, denoted by Oq
for all z € Z, k > 3 with probability one; (iii) E [SUPeeeo ||V“s(z,0)\|2+5] < oo for3éd>0,v=14{012...x},
Kk > 3; (iv) © is bounded; (v) 0o is in the interior of © and is the only 0 satisfying (1).

Lemma A.3 (Local Uniform Weak Convergence with Compact@ess) B
Suppose Assumption A.1 holds, then we have || =37 Vs (2:,0) — E[V"s (2:,60)]| = 0p(1) for 6 = 00 + 0,(1) and
ve{0,1,2,...,k}.

Proof. Consider

|5 iy Vs (26, 0) — E[V7s (21, 00)]| B
< [ EE T (28) - B[ )| + 1B [ (2.8)] — B (7 (.00
< supgee, H% > Vs (2,0) — E[V's (zl,e)]H + HE [V“s (zi, 0)] — E[V®s (2, 00)]H .

We have supycg, 1130 VVs(2:,0) — E[VYs(2:,0)]|| = 0p(1) from Lemma A.1 by letting m(z,0) = V"s(z,0)
and noting Assumption A.l satisfies all the conditions in Lemma A.1 for § € ©¢. The continuity of E[V"s (zi,0)]
at 0o (by the Dominated Convergence theorem with the dominating function supgcg, ||V“s(2i,0)||) implies that

HE (Vs (2i,0)] — E[V"s (2i,60)] H = 0,(1), since = o + 0,(1) and hence from this and the result above, it follows
that |2 377" VVs (2:,0) — E[VYs (2:,00)]|| = 0p(1). ®

Lemma A.4 (Local Uniform Weak Convergence without Compactness)

Under Assumption A.4, we have H%ZLI Vs (2:,0) — E[V's (zi,eo)]H = o0p(1) for § = 0o + 0p(1) and v €
{0,1,2,...,k}.
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Proof. Again noting Assumption A.4 satisfies all the conditions in Lemma A.2 for § € ©p, we have the uniform
convergence and the dominated convergence theorem assures the continuity of E[V"s (z;,0)] for § € ©¢ and hence

the result follows. m
Now we show that conditions (i)-(viii) in Lemma 2.1 are satisfied under Assumption A.1-A.3 or Assumption A.4,

A.2-A.3. Condition (i) and (iia) are directly assumed. Condition (iib) is by the dominated convergence theorem with
the dominating function given by supyce, HV s(z,0) H under Condition (i), (iia), and E[supgecg, ||V s(z,0) || < oo.
Condition (iii) holds from Lemma A.3 or A.4.

Condition (iv) holds by the stochastic equicontinuity of \F S (Vs (2i,0) — E[V?s(2:,0)]) for § € ©g as

discussed in A.2 with m(z,0) = V2s(z,0). Condition (iv) is used to show that

(259 (s00) - L, s atn) ) (0 00) @ (- 00))) = 0ptn™*7)

in the proof of Lemma 2.1. Alternatively, it can be shown as

(i v (20) = £ 50 V2 (,00) (7= 00) @ ((0-0)))|

1y Vs <Zi’0)HH9_9°H ‘9—90( = | B[ (21, 600)] +0,(1)]| |7 - 6o H@-eoHQ:op(n*Bﬂ),

where 6 (0) lies between 6 (6) and 6y noting 0 — 6o = O,
A.3 under Assumption A.1. This implies that Condition (iv) can be replaced with another local uniform convergence
condition H% S Vs (2,0) — E[V3s (2, 00)] H = 0p(1) for @ = 0o + 0p(1) under Assumption A.1. Condition (v)
is assumed in Assumption A.3. Condition (vi)-(viii) are by CLT provided that E [[|[V"s(z, 00)||2] < o0, v =1{0,1,2}
respectively, which are satisfied under Assumption A.2.

Now to establish additional preliminary lemmas, we need a stronger set of conditions as Assumption 3.1-3.2 or
3.3-3.2. Note that Assumption 3.1-3.2 implies Assumption A.1-A.3 and Assumption A.4 is weaker than Assumption
3.3. First, under Assumption 3.1 or 3.3, we have the uniform weak convergences (U-WCON) for the normalized sums
of functions in V"s(z,80),v = {0,1,2,...x} up to the second order as in a neighborhood of 6y, denoted by ©¢ and
hence it is not difficult to show that

<

(%) The second last equality is obtained from Lemma

Lemma A.5 Under Assumption 8.1 or 3.3, we have
1 n v v v v
sup 2= V7 s (20, O IV s (20, 0)| = E[IV™ s (21, 0)I IV 28(21,9)H]‘ = op(1), (17)

forvi,va € {0,1,2,...,k},k > 4.

Proof. Provided Assumption 3.1 holds, (17) is obtained by applying the Uniform Convergence theorem of Lemma
A.1 by letting m(z,0) = ||V s (2i,0)]| [|[VV2s (2, 0)]|. Noting

v VV1s(2;,0) 12+ VY25(2,0)]°
E [supgeo, [IV45 (21, Ol [V (21, 0)|I] < B [suppeq, [T2Cul Iz eCutll

(18)

< E [suppey 9775 (20, 0)I] /2 + E [supgee, V725 (21, 0)[7] /2 < oo,

which is satisfied by Assumption 3.1 (iii), all the conditions for Lemma A.l are trivially satisfied.
Alternatively under Assumption 3.3, we obtain (17) directly from Theorem 1-3 in Andrews (1994), which is a

quite general result and hence we rather provide a simple proof for our specific purpose. Noting other conditions

for Lemma A.2 are trivially satisfied under Assumption 3.3, the uniform convergence result of (17) is obtained upon

verifying the Lipschitz condition for V01,602 € © as

H|V§118(2,91)|| 172 5(z, 00) || = [[ V"4 (2, 92)H HV”?S(Z,@z)\H

HIV 5 (2, )H V2 5(z,61) 1)

< |2 5s (2ol 2o 600
o 1|||| ] 95 G0 9 ) {

- [Tust 91; Y o I s ‘vvl o(2.00)] = IV s(=, 02)

< |vs ol a o, L0 Ve ),

S suppe s ) B ) s b+ s L BT B (2) 161 — ]

= (subpee 1715 (, )Hsz(Z)JrsupeeeIIV“QS(Zﬁ)HBm(Z))||91—92HEM(2)||91—92||,
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where the first inequality is by Triangle Inequality and the second inequality is obtained by the Lipschitz conditions
for V¥1s(z,0) and V2s(z,0), since for v = vi,v2, [|[VVs(2,01)| — [|[VVs(z,02)||| < [[V"s(z,01) — VVs(z,02)| by
Triangle Inequality. Now we need to verify that E [M(Z)2+6] < oo, which is true, since

E [supgeo [1V7"s (2,0)77° Bu, ()] < B [(supgee 1975 (2,01 + Bu, ()" ) /2] < oo (19)

for (va,vs) € {(v1,v2), (v2,01)} under B [supgee V705 (2, 0) ] < o0, B [suppeq 17725 (,0)|*F] < oo,
E [Bm(Z)‘*”'} < o0, and E [Bm(z)‘““'} < oo with & =25. m

Lemma A.6 (Consistency of 0 ) Suppose 0o is the unique solution of (1) and 6 solves (8) and further suppose
SUPgeo || 2 Sory 8(2i,0) — E[s(z,0)]|| = 0p(1) and supyee [[2(0)]| = Op(1), then 0" is a consistent estimator of 0o.

Proof. Let € > 0. Then, there exists 6 > 0 such that whenever § € ©\B(fo,¢), we have ||E[s(z;,0)]|| > § provided
that g is the unique solution of (1). This implies

*

Pr (He - 90H > 5) <Pr (HE[S 2,0 H > 5) — Pr ( ‘E[ (2,0)] = 23" (20,07 — %5(9*)“ > 5)
< Pr (HE (2,07)] — L7 s(2:,0 H + ch(e )H )

n

< Pr (SUPeee HE 21,9)} - % :L 1 Zu || + 1 7 SUPgco H ( )H > 5)
= Pr(op(1) >0) — 0,

where the second inequality is by Triangle Inequality and the last equality is obtained provided that the uniform

convergence of = 3" | s5(2;,0) to E[s(z,0)] over 6 € © and supycg ||c(0)|| = Op(1). The uniform convergence holds

by Lemma A.1 or Lemma A.2 with m(z,0) = s(z,0) provided that all the conditions in Lemma A.1 or Lemma A.2
are satisfied. The second necessary condition supycg [|¢(0)|| = Op(1) is satisfied assuming conditions in Assumption
3.1-3.2 or Assumption 3.3-3.2 hold for the whole parameter space © instead of ©¢ similarly with Lemma A.7. =

Lemma A.7 Under Assumption 3.1-3.2 or 3.3-3.2, (a) we have
() = ¢(0) + 0p(1) (20)

uniformly over 8 € ©9 C © and (b) moreover, we have ¢(6o) = c(6o) + Op (ﬁ)

Proof. Lemma A.7 (a)
First we note that ¢(#) is bounded uniformly over § € ©¢ under Assumption 3.1 (ii)-(iii) and Assumption 3.2. This

is evident, since we can bound supycg, |/c(0)|| by sums and products of supgseg, |Q (0)]], supyeo, Vs(zi,0)|]?, and
SUPjeo, IIs(zi, 0)|]?.using Triangle Inequality, Cauchy-Schwarz Inequality, and the Dominated Convergence theorem.

It is worthwhile to remark that ¢(#) = c(6) + 0p(1) is not necessary to show Condition 1 and hence not necessary
in proving Proposition 3.1. However, nonetheless we present this result, since Assumption 3.1-3.2 or 3.3-3.2 that are

sufficient for Proposition 3.1 imply (20) and it is useful to show ¢(6o) = ¢(6o) + O, <\F) In what follows, we bound

ea%h term uniformly over § € ©p and suppress the sup-norm over 6 € Og otherwise it is noted. Now for any 6 € O,
note
a(0) — c(0)
= (570) (5 £ [Q0)5(:1.0) 0 Q0)s(:1,0)] ) = 3 1(0) (B IQ0)s(2,0) 9 QO)s(.0) ) (21)
+ (25 V51 0@, 0)] - B [9s(5,00Q00)5(:1,0) (22

Now rewrite (22) as

% s [Vs(zi, 0)0(0)s(z:, 9)] — E[Vs(z:,0)Q(0)s(z:,0)]
= % Sy [V, 0)Q(0)s(2,0) — V20, 0)Q(0)s(2:, 0)] (23)
+% >t [Vs(zi,0)Q(0)s(2i,0) — E [Vs(zi, 0)Q(0)s(zi,0)]] - (24)
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Then we have for (23),

Cr Vs 0) (Q0) - ) s(21,0)] H < S Vs ) (0l [ @0) - @) (25)

n

by Triangle Inequality and Cauchy-Schwarz Inequality. In what follows, again we treat H 9) (: —C/Q\(Q)*l) as

nonsingular for § € ©g. This is innocuous, since by Lemma A.1 or A.2 with m(z,6) = Vs(z,0) and Assumption 3.2,
with probability approaching to one, H1(6) is nonsingular for § € ©¢. Now note

100 - o) = |e® (30 - ) ™) Qv)| (26)
< el e®)|||e®)™ - @) || < oMo, (1) = 0, 1)

by the uniform convergence of @(6)_1 to Q(0)~' and Assumption 3.2 applying the Slutsky theorem. We have
Ly Vs (2i,0)]] s(zi,0)]| = Op(1) by (18) and Lemma A.5 with v1 = 1 and vy = 0. Together with (26), this
implies (23) is 0,(1). Now note we have

E [supyce, Vs (2,0) Q(0)s (2, 0)|]
< E [supyco, IIs (21, 0)|1 Vs (2:, )| QO] < CE [supyee, lls (zi,0)llIs (i, 0)[] < oo,

from (18) and sup,cg, [|Q(0)|| < oo or Lipschitz condition as

[|Vs(z,01) Q(01)s(z,01) — Vs (z,02) Q(02)s(z,02)||
< supyee, [1Q(0)s(2,0)[| Vs (2,61) — Vs (z,02)]
+ supgee, |QO)Vs(z,0)|| [Is (2,01) — s (2,02)[| + supgee, |15 (2, 0) Vs(2,0)| [|Q(01) — Q(62)]| o7
< supyee, [|Q(0) ] supgee, [I5(2,0)|| Bi(z) [|61 — 62| + SUPyeg, 1Q(0) ]| supgee, IIVs(z,0)l Bo(2) |61 — 62| (27)
+supgeo, [15(2,0) [ supgee, V(2 0)|| (supgeo, 1QO)])” supgee, IVH1(0)] 161 — b2
= M(2) |61 — 02|,

where the first inequality is obtained by Triangle Inequality and Cauchy-Schwarz Inequality and the second inequality
is obtained by Lipschitz conditions for s (z,6) and Vs (z,0) and since [|Q(61) — Q(62)|| = [Q(01)] [|Q~" (1) — Q™" (62)| -
[Q(62)]]. In the last equality, we set

M(2) = supyee, [|Q(0) || supgee, 15(2,0)|| Bi(2) + supgee, Q)| SUPyee, [Vs(z,0)[| Bo(2)
+ SUPyco, lls(z, 0l SUPgco, Vs(z,0)]] (SUPeeeo ||Q(9)||) SUPgco, [VH.(0)]

and we have E [M(z)*"] < oo by a similar argument with (19) provided that E [supgeeo ||s(z,0)||4+5/} < 00,

E [SUPeeeo ||Vs(z,0)||4+5,] < oo, E [Bl(z)4+‘5/} < 00, and E [Bo(z)4+5'] < oo with §' = 2§, and also assuming
Supgee, [IVH1(0)| < oo. Therefore, we can apply the Uniform Convergence theorem of Lemma A.1 or Lemma A.2
to (24) and have

supsco, |1 iy (95 60,6) QO)s (:1:0) — IV (2,0) Q(0)s (2,03 = (1) 23)
From (23)=0,(1) and (28), we conclude (22) is 0,(1) uniformly over 6 € ©g. Now consider

suppco, || Ha(6) = Ha(0)|| = 0,(1) (29)
by the uniform convergence from Lemma A.1 or A.2 with m(z,0) = V2s(z,0) and that

H% S s(zi,0)s(2:,0) — E [s(z,0)s(2i,0)]|| = 0p(1) (30)
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uniformly over § € ©g by the uniform convergence result of Lemma A.1 with m(z,0) = s(z;,0)s(zi,0)" provided that
E [supyco, ||s(zi,0)]|°] < oo or Lemma A.2 by verifying the Lipschitz condition as
Hs(z,@l)s(z,ﬁl)' 75(2792)3(2,02)"’ (31)
HS(Z7 91)8(27 01)/ - S (Za 91) S (Z, GQ)IH + HS(Zv 91)5(27 02)/ - S (Z7 92) B (Za 92)/H
2sup [|s (2,0)|| ||s (2,01) — 5 (2,02)[| < 2sup |5 (2,0)]| Bo(2) |01 — 02|

0ce 0€®

INIA

by Triangle Inequality and noting F [supgee s (z,0)|>T° Bo(z)2+5} < oo under E [sup(,,e@ Is (z,9)||4+5’} < oo and
E [Bo(z)4+5,] < oo with & = 28. From (26), (29), and (30), it follows that

where the first and the last equality come from vec(gg’) = g ® g for a column vector g and hence we bound (21) as
op(1) uniformly over § € ©¢. This concludes ¢(f) = ¢(0) + 0,(1) uniformly over 6 € By. m
Proof. Lemma A.7 (ii)

Note
Vi (Q60) - Q(80)) = 0,(1) (33)
by the Slutsky theorem and that
NG (flz(eo) - Hz(eo)) = % S (V25 (20, 00) — E [V2s (21,00)]) = Op(1) (34)

by the CLT under E[HV2s(zi,00)H2] < co and that by the CLT

% S (20, 00)s (20, 00)' — E [s(z1,00)5(z1,60)'] = Op(1) (35)

under E [Hs(zi,eo)s(zi,eo)'ﬂ = E [||s(2,00)]|*] < 00. We can also apply the CLT to

% 2 i1 IVs(z3,00) | lIs(2i, 00) | = E{[[Vs (23, 00)l l|s(2i, 60)l] + Op(1) (36)
under (a) E [||Vs(zi,00)]|? ||s(2,00)||*] < oo and to
% >zt [Vs (2i,00) Q(60)s(zi, 00) — E [Vs (2, 00) Q(0o)s (2i,00)]] = Op(1) (37)

under (b) E [HVs(zi,GO)Q(Qo)s(zi,Oo)Hz} < oo. Both (a) and (b) are satisfied provided that
E[|s (zi,90)||4} < oo and E[[|Vs (zi,Oo)Hﬂ < o0, since

E[||Vs (zu@o)Q(@‘lo)S(%@o)IIQ] S4\|Q(9o)ll2E [lls (zi,00)1* Vs (2, 60) 1]
< C(E [(IIs (z:,00) I + [IVs (21, 00)[]) /2]) < 00

by Cauchy-Schwarz Inequality. Applying the results of (33), (34), and (35) to (32), we can show that (21)=0, (1//n)
for @ = fg. Similarly, plugging the results of (33), (36), and (37) into (24) and (25), we obtain (22)=0, (1/4/n) for
6 = 0y and hence we conclude that ¢(6p) = ¢(0o) + Op (1/4/n). m
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To characterize V¢(6), we introduce some matrix differentiation results consistent with our notation. We denote
am x n matrix D as (d;;)n', where d;; is the i-th row and the j-th column element of D. Also we denote a m x k™
matrix E as [ei;]; , where ej; is a 1 X k vector such that

€11 e €1pn—1
E = [eij]ln = , :
€ml ‘'t Eppn—1
and hence e;; = (E; (j—1)k+1> Ei,(j—1)k+2, - - - » Ei jk) by defining E, , as the u-th row and the v-th column element

of E.
Remark 1 For k x k matrices A and B, we have V (AB) = AVB + B'V (A').
Proof. Let C = AB. Then, we have ¢;; = Z;;l a;1by; and hence
k k k
VC = [Veyly = [V(Zﬁll a“bl]-)] = [Zle ailVble + [Zle bljvail:|2
= (aiy) [Vbisls + (bs0)F [Vazil; = AVB + B'V (A')

|
Remark 2 For a k™ x k™ matriz A and a k™ x 1 vector b with m,n =0,1,2,..., we have
V (Ab) = AVD +vee (V'V (4)),
ai
where vec* ((a1, az,...,ax)) = : and a; is a 1 X k vector for j = 1,..., k. For completeness, we let vec (¢) = ¢
[£25

for a scalar c.

Proof. Let ¢ = Ab and note Ve¢; = Zf; auVb + Zf:l biVa;. This implies
V' [Vajlt"

= (aij)fn Vb + ; = AVb +vee (V'V (4))).
b [Vajem]t"

k™ kM

Vet = [ty aaVh] |+ [ bivad]

1 1

Remark 3 Moreover, we have V (vec* ()) =wvec* (V (+)) by definition of vec”.

Proof. For a 1 x k™ vector ¢ = (c1,...,cm) with ¢; to be a 1 X k vector and ¢ = 1,...,m, consider
c1 Va
\Y (vec* (c)) =V (vec" ((¢1,..-,cm))) =V : = : = vec ((Ver, ..., Vem)) = vec (Vo).
Cm Vem
[

Remark 4 For matrices (including column and row vectors) A and B, we have
V(A®B)=(A® VB) + (VA®* B),

where we define ® for matrices D (m x k™) and E (p X q) as

D® E
dirern d11€1q dlkn—lell dlkn—lelq
diiepr -+ diiepq dign—1€p1 -+  dign—1€pq EFE®di -+ EQdyjn-
dmie1r -+  dmieiq dppn—1€11 -+ dppn—1€1g EQdmn -+ EQd, -
dm1€p1 e dmlepq dmkn—l €p1 LR dmkn—l €pq
for 1 x k vector dij, i=1,...,m and j =1,...,n and ey, is the u-th row and the v-th column element of E.
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Proof. Consider

V(auB) V(alknle)
V(A® B) = ( : : )
V(amlB) V(amknle)
a11VB - alkn,_1VB B ® Vai cee B ®Va1kn—1
= ( . . ) + ( . . )
amiVB -+ a,m-1VB B®Vam -+ B®Va,m1

= (AQVB)+ (VA®* B) .
(]
Remark 5 For an invertible matriz A (k x k), we have V (A™") = —A™" (A)T'V(A) = —(4'4)71v(4).
Proof. From (A’)~' A’ = I, we have V ((A')_1 A') = VI = 0 and hence from Remark 1, (A') "' V (A")+AV (A7) =
0. Multiplying A~ each side, we have

—1

AT ((A) TV (A) + AV (A7) =0, (AA) TV (4) + V(A7) =0,

which gives V (A7!) = —4~" (A')i1 V(4.

~

v (@er)] -

yo-l (@(90)') —VUL(Q(60)) = O, (1/y/R) for 0 € O and v = {1,2,3}

v'Q(O)|| = 0,(1) and (v)

Proof. For 0 € O, note Remark 5 implies (noting Q(0) ' = —H, () = — L3 Vs(zi,0) and Hy(0) = VH,(6) by
definition)

v (Q0)) =¥ ((f) ) = (Fe)) " o) V) = QY A0 ) (39)
and hence |[V(@(0))] < Q@)1 F(0)]] = Oy(1) by (26) and (29). Now consider
HV2(@<9)H‘| (e )H<HV( 0rQo)| |0 + |eere@]|[vie|
<2|aey| [vee] | e H HQ o) |vi=0| (39
<2fe@[vae |0+ [ao)| [vao] - 0w,

noting HV (Q(@)') H = HVQ(G)H and since

vah(e)“ - H% S Vs (a, 9)” = || B [V®5(2:,0)] || + 0p(1) = O, (1) (40)
applying the Uniform Convergence theorem of Lemma A.1 or A.2 with m(z,60) = V3s(z,6). Similarly we can show
that

v (?<9>’Z\! - [[v (eorammo)|
<[[v (@@ra®)| | H + HV o )| |70
I (awraw) o] Jaw] [
= |2 (@ya®) | | 22| + 0,1) + 0,(1) + 0,(1) = 0,(1).
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from (26), (38), (39), and by the uniform convergence of V2Hs () = LS V*s(2,0) to E [V*s(2,0)] from Lemma
A.1 or A.2 with m(z,0) = V*s(z,0). The last equality is obtained noting we have

[v* (@0raw)| = 2 waw|[vaw] 2]

v°Q(0)|| = 0,(1)

from (26), (38), and (39). Now to show the second result, first note that we can rewrite

Q(00) = (—Hy = V/Vn) " =Q+ 0, (1/vn) (41)
by the Slutsky theorem and V = O,(1) by CLT and also we rewrite

Ha(60) = Ha + W/vn = Ha + 0, (1/V), (42)
since W = O, (1) by CLT. From (38), consider

v (Q00)) = Q(80)Q(B0) 2 (00) (43)

= (Q+0,(1/vn)) (Q+ 0y (1/v/n)) (Hz + Op (1/V/))
= Q'QHz2+ 0, (1/v/n) =V (Q(80)") + O, (1/v/n)

using (41) and (42). Similarly from (39), we have V> (@(00)') = V2 (Q(6)) + O, (1/+/n) from (41) and (42)and
noting VHz(6o) = VHs + V (W//n) and V (W/y/n) = VW//n = Ws/v/n = O, (1/y/n). =

In the following proof, we will apply Triangle Inequality and Cauchy-Schwarz Inequality whenever they are
necessary without noting them.

Lemma A.9 Under Assumption 3.1 -8.2 or 8.8 -8.2, Condition 1-3 are satisfied.

Proof. Condition 1
¢(00) = Op(1) is obvious from Lemma A.7. m

Proof. Condition 2 . o .
Again we bound each term uniformly over § € ©¢ and suppress the sup-norm otherwise it is noted. Now consider

for 6 € ©g
vz () (44)

n
n i=1

—~
>
~
<
/N
=
—
)
—~
5
~—~
V)
—~
N
s
)
—_ X
®
)
—~
S
~—~
v
N
by
)
~
[ A
—
_|_
<
A
S
—
—
<
v}
—~
N
S
=
Q)
/—\
v
/\
N
S
=
[ S
—

using Remark 2. For the first RHS term of the last equality in (44), note

HV(H2 ) =[5 v ((72s0)
<i ) HV( V 8(21,0)),)" = 711 > |V s zi,G)H =F [HVSs(zi,G)H] +o0p(1) = 0,(1)

(45)

uniformly over § € O applying the Uniform Convergence theorem of Lemma A.1 or Lemma A.2 with m(z,0) =
V3s5(z,0). We have shown that

LS [R0)5(20,0)(0) © Q0)s(24,0)(60)] — @ (0) B [5(2:,0)5(21,0)] @ (6)'

y = 0,(1) (46)

uniformly over § € ©q in (32) and from this result with (45), we bound the first RHS term of the last equality in (44)

[svee” (3 201 [@@)sC.0) <e>s<zi,e>})’( (=07)))]
(32 [Q@s(, ><> () )])’(v (sz)))\
. a0 o Q]| (7 ()| 0409
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Now consider

( Ly [QO)s e, )s(zi,(f)]):%ZLIV[@(e) (21,0) ® Q(O)s(=1,6) | (47)
- le 1( ( s(zi,0 )® (9)3(21-,9)) (48)
sy, (@ ()s(zi,e)eav(@(e)s(zhe))) (49)

from Remark 4. Noting V (Cj(@)s(z27 )) = Q(0)Vs(zi,0) + vec (s(zi,ﬁ)'v (@(0)')) from Remark 2, we rewrite
(48) as

L (Q)Ts(21,0) + vee (s(1,0)'V (Q(0))) © Q(6)s(21.0)) (50)

= 5 (QO)Vs(0) © QO)s(=1.0)) (51)

+ o5y (vee (5(,0)'V (Q0))) © Q(6)s(21,0)) - (52)

Now note that HA ® BH = |A® B|| = ||A|| | B| for matrices A and B including column or row vectors. This implies

for (51)

R CONEC >®*c§< 2.0))| <230,
= 130, Q0950 @@=, Hsnzi:lnwz“ 0)l l1s(=1. 0)] | @(0)

CORCOERCORCO)] (53)
= Op(l)

uniformly over 6 € O by Lemma A.5 for (v1,v2) = (1,0) under E [supyce, ||V”s(z¢,0)\|2] < oo,v = 1,0 and by
(26). This gives

150, (veer (s(zz, oYV (Q))) & Q<9> (z.0))

e 01 ) oo 2
7 (00 [0 52 bt 07 B0) =0
by the uniform convergence of £ 37" ||s(z, 0)||? to E [|\s(z,9)\|2] < 00, (26), and Lemma A.8 noting ||vec” ()| = |||

and hence we show that (48) is Op(1) uniformly over § € O¢ from (53) and (54). Similarly we can show that (49) is
Op (1) around the neighborhood of 6y and hence we have

v (10 [00)s(:.0) 8 Q0)s(:1.0)] ) = 0,00). (55)

Together with (29), this shows the second RHS term of the last equality in (44) is Op(1). Now consider for the third
RHS term of the last equality in (44),

(0)5(20,0)) + £ S0, vee” ((QO)s(24,0)) 7 (Vs(21,6))))
(0)Vs(z1,0) + vee” (s(z:,0)'V (Q(0 >)))
(2::0) QUOY'V ((Vs(21,0))) ) -

(56)
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This implies

v (,L [Vs<zz, 0QO)s(,0)] )| < 1 i, 195,011 | Q)|
N e Hvec ( (26,0)'V (Q6y ))\ + 130 [oee” (s20,0/Q0)'V ((Vs(24,0)) )
LY sz, H HQ )| +2 2 ||v:s<zz, 0)ll{|s(:,0)'V (Q(0)) | )
+ Iy, H 5(2i,0)Q(0)'V ((Vs(zi, 0 H
< LY 9z, n | H + 1 198z, )1 sz, 0)11 |7 (Q(0)')
+ 55 sz, ) [ 2szi, 0)]| | Qe6)
We have the first RHS term in the last inequality of (57) equals to O, (1) uniformly over 6 € ©g by (26) and the uniform
convergence of £ 3°" || Vs (2:,0)]1% to E [||Vs (2, 0)||*] < co by applying Lemma A.1 under supyco, E [IVs (2, 0°] <
oo or by applying Lemma A.2 (Lipschitz condition holds similarly with (31) under E [sup,cg [|Vs (2,0)|| B1(2)] < o0)
with m(z,0) = ||Vs (z,0)||>. Clearly the second RHS term of the last inequality is O, (1) uniformly over 6 € O from
Lemma A.5 and Lemma A.8. Finally, we obtain the last RHS term of the last inequality in (57) equals to Op(1)
uniformly over 6 € ©¢ from (26) and Lemma A.5 with (v1,v2) = (0,2) and thus we bound the third RHS term of
the last equality in (44) to be Op(1) uniformly over § € ©¢. This completes the proof. m
For later uses, here we summarize the differentiation results of Vé(0) and Ve(0), respectively, as
x n A ~ / ~
Joee” (2300 [Q0)s(20,0) @ Q(0)s(20,0)] ) (v (H:(0))))
L5, (QO)Vs(zi0) @ Q(
+2 500, (vee” (s(20,0)'V (Q(0)' ) ) @ Q(0)s(20,0))
veO)=q |, - 15, (QO)s(=:.6) @ Q(
)

e
~—~
V)
—~
N

Bh
e
~
——

/N
Q)
=
Y
=
<
V2]
=2
ey
=
+
e
)
o
S
~ V)
=
R
>
—
<
/N
Q)
=
>
=
N—
N—
N—

vc(e)— (59)
fvee” ((E[Q(8)s(:4.60) © QO)s(=1,0))) (V (Ha(6))))
+LHa(0 (E[ (0)Vs(20,0) & Q(O)s(21,0)] + E [vec” (s(24,0)' 7 (Q(0)) & Q(0)s(=:,0)] )

@) (EQ

) Zi, (@
+$H2 0) (E1Q(0)s(zi,6) @ Q(B)Vs (=1, 0)] + E[(Q(6)s(2:,6)) @ vec” ( (zu ) ( Q) ,
B[Vs (2i,0) (Q(0)Vs(2i,0) + vec™ (s(2:,0)'V (Q(0))))] + E [vec” (s(2:,0)'Q(0)'V (Vs (21,0))’))] -
Proof. Condition 3
In what follows, we will apply Triangle Inequality and Cauchy-Schwarz Inequality whenever they are necessary
without noting them. Again we bound each term uniformly over 6 € ©¢ and suppress the sup-norm otherwise it is
noted. From (44), consider

V (3vec” (320 [0 0 @ () .0)]) (v (f200))))
VIE0) = +V (3007 (50, [00)s(0) © QO)s(:1,0)] ) (60)

Considering ||V(H2(0)")|| = [|[VH2(0)|| and ||[V2(H2(0)")|| = |[V2H2(0)]|, for the first RHS term of (60), we have
[V (3vee (2 i [Q0)s(20,0)  Q@)s(=1,0)] ) (v (7=00))))) |
®)] |2, [@(9) 2,0) © Q(0)s(z:,0)]
0)© QO)s(=1,0)| )

Ziy
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uniformly over 6 € O from (40), (46), (55), and since V2Hz(0) = 2 3" | V*s(2,0) = E [V5(2:,0)] +0p(1) = O,(1)
by the Uniform Convergence theorem of Lemma A.1 or Lemma A.2 with m(z,0) = V*s(2,0). Now we bound the
second RHS term as

v( flz(e)v( z[@m(z 0)® Q(0)s (2, >]>)H
(@)

< 1w, HH < (21,0) @ Q(0)s(2:, 9)])H+§ V2 (%é [@(a)s(zi,a)@@(e)s(zi,a)DH
(61)
Note, for the first RHS term in (61)
IVIL0)9 (220, [00)s(2:,60) © Q0)s(=:,0)] ) |
<C ‘vfb(e)H |V (2 20y [Q0)s(z:,0) @ Q0)s(21,0)] ) | = 04(1)

by (40) and (55). From (47) and (50), for the second RHS term in (61), we have

HVZ( L [Q0)s(,0) © Q0)s(z.0) )|

Hv( _1( (0)Vs(z,0) @ Q(6)s(zi,0) ))H .

Jr
—+

T T e b @) 2w

First we bound the first RHS term of (62) uniformly over 6 € ©g as

[v (25 (@0vsz0 @ @O)s.0)) |
<1y, [V (QO)Vszi0) @ Q©)s(=:,0)) |
<42 v (@00 [ 900« 122, [0 0 ¢ @0
= L3, ||QO)V2s(zi, 9) (Vs(z,0))' V (Q(0)') H@\(Q)s(zi 0|
+r X (G)Vsz Q)HHQ VS( ,0) +vec” (s (Ae) H
< R Vazd) Q)] +2 Z_1HV2< O Is(z1,0)1 Q@)
+ 5 iy 1Vs(z, 0|| HQ ] F LS 1Vs(zi,0)| [1s(24,0)) H HHVQ H
= 0,(1) + 0,(1) + 0y (1) + 0y(1) = O, (1),

where the second inequality is from Remark 4, the first equality is from Remark 1 and Remark 2, the third inequality
is from Remark 3. The second last equality comes from Lemma A.5, Lemma A.8 and (26). For the second RHS term
of (62), from Remark 2-4, it follows that

v (% o (vec* (S(Zi, 0)'v (@(9)/)
<lse v (vec* (5(Zi70)lv (@(9)’ )

+ 1500 fvec” (s(z,0)'V |¥ (@@s.0)|
< LY I9s (a0 stz 011 |7 (QE0)) | | Q@) | + & i stz 0017 | w2 (Quey) || | @@
250 s O 195G, 01|V (@06 | @@ + 2 iy st 0012 | v (@e6y) |
= 0y(1) + 0,(1) + 05(1) + Op(1) = O,(1)

uniformly over 6 € ©¢. The last equality comes from Lemma A.5, Lemma A.8, and (26). Similarly we can also bound
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the last RHS term of (62) uniformly over 6 € ©q as

MO CONCRENCONCON
i CONCID) R CORCID)| REpva COECENL CORCD)]
L s zen\vae N\+ Z_JW829HHQ |

+21 %0 wvazw v Qo))

3 et O HHV( )H+ il O I9st 01 [0 [ (@)
+ 20 sz, 0)] V(= HHQ H
— 0,1 Oy(1) + 0,(1) + 0,1 + 0s(1) = 0,(1)

using Remark 2 and Remark 4. The second last equality is obtained from Lemma A.5, Lemma A.8, (26), and by the
uniform convergence of £ 37" [ Vs (z;, )| to E [IVs (z, 9)||2] The results above together bound the second RHS
term of (60) to be Op(1). Finally we rewrite the third RHS term of (60) as

v? (% e [VS (2i,0) @(9)3(2’1‘7 9)])
- ( LS Vs(zi,0) (Q(Q)Vs(z 0) + vec* (s(z )YV g

+2 500 vee (s(26,0)'Q0)'V ((Vs(z:,6))’
- v <% S Vs(z,6) (@(G)Vs(zi,e) + vec” (s(zi,e) v (@(9),)))) (63)
4V (% > vec” (S(Z'u 0)'Q(0)'V ((Vs(zi, 0))/))) Y

from (56). For (63), note

by Remark 1 and Remark 3 and hence
Hv ( S Vs(z,0) (Q(O)Vs(z 0) + vec* (s(z 6)'v (Q(e )))) H

<iyn JWsz9MW229H. -JWSZQHHV@()H

+ I3 IVs(z, 0|1 + = Z v HVS(Z 9)

+ I3 sz, 0| Vs z@”‘ (0))]| = 0n( +0()+0()+0(1)=op(1)
from (26), (18), and Lemma A.8 and since i) £ 37" | ||V"s (2, 0)]| HV2 zi, 0) H = 0p(1) for v € {0,1} by Lemma
A5 and since i) = Y7 | (Vs (zi, 0)||> = O,(1) by the uniform convergence. Now c0n51der for (64)

V(%Z"lvec* (s(zi,ﬁ)/Q(G ((Vs(zi,0)) ))‘
<ivi|v Uz@@@v«wwennu

< LY s 0 [P0, 0| [QO)| + 2 S0y ls(z:,0) ) | Vs(z,0) || Q)|
+ A3 stz 0)1L V2524 0)]| [V RO)|| = 00 (1) + 0,(1) + 0,(1)

L5 veet (V (560,00 Q0)'V ((Vs(26,0)))) )|
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by (26), Lemma A.8, and Lemma A.5 and hence we have the third RHS term of (60) equals to Op(1) uniformly over
0 € ©¢. This completes the proof. m

A.2 Additional Preliminary Lemmas for the Third Order Expansion

First, note that Lemma A.3 and Lemma A .4 trivially hold under Assumption 3.1 and Assumption 3.3, respectively con-
sidering that Assumption 3.1 and Assumption 3.3 are stronger than Assumption A.1 and Assumption A.4, respectively.
We establish conditions (i)-(ix) in Lemma 2.3 are satisfied under Assumption 3.1-3.2 or Assumption 3.3 and 3.2. Again
Condition (i) and (iia) are directly assumed Condition (iib) is by the dominated convergence theorem with the domi-
nating function given by supycg, HV s(z 0)” undcr Condition (i), (iia), and Efsupyce, HV s(z,0) H < 0o. Condition
(iii) holds by the stochastic equicontinuity of f S (VPs (2i,0) — E[V?s(2:,0)]) for 0 € g as discussed in Lemma
A.2 with m(z,0) = V3s(2,0) under Assumption 3.3. Instead, under Assumption 3.1, Condition (iii) is replaced by
another local uniform convergence condition as H% S Vs (2,0) — [V4 (zi,00) ]H = 0p(1) for 6 = 6o + 0,(1)
similarly with our replacing Condition (iv) of Lemma 2.1 with H% S Vs (2:,0) — E [V3s(2i,00)] H = 0p(1) for
0 = 0o + 0,(1). Condition (iv) is implied by Assumption 3.2. Conditlon (v) through (viii) holds by CLT provided
that E [[|[Vs(z,00)]?] < oo, v = {0,1,2,3} respectively, which are satisfied under Assumption 3.1(iii) or 3.3(ii).
Condition (ix) is the result of Lemma 2.1. We also need to verify following lemmas.

Lemma A.10 Under Assumption 8.1-3.2 or 3.8-8.2, Condition 4 (i): Vc(0o) = Ve(0o) + Op (1/+/n) is satisfied.
Proof. This can be proved similarly with Lemma A.7 (b). From (58) and (59), it follows that
IVE(0o) — Ve(0o)||
H %vec* ((% > [@()S(Zi,go) ®@(90)5(zi790)]) (V (ﬁ2(90)/))) H (65)
—3vec ((E1Q(00)s(2i,00) @ Q(00)s(zi,00))) (V (H2(60)")))
5 150, (@(00) V(e 60) @ Q(60)s(=1,60))
5H2(60) L1 . A~
2500, (vee” (s(20,00' (Q00)') ) &7 QO0)s(=:,00)

IA

[

—~
(=)
(=]

=

) E [Q(Oo)Vs(zi,Go) ® Q00)s(z:,00)
_§H2(90) * ’ /
+B [vec” (s(z1,00)'V (Q(00)') & Q(00)s(z:, 00) |

~ 1577, (@(00)s(24,00) © Q(00)Vs(21,00))
1q ) " £
n 2 ( ( +% 1( (60)s(zi,00) ) ® vec” ( (2i,00)'V (Q( ))) ) (67)
_1H,(00) ( E[Q(60)s(zi,00) ®Q(90)V8(Zz790)]
27200 +E[(Q(60)s(2i, 00)) ® vec™ (s(zi,00)'V (Q(60)"))]
L 35 Vs(zi,00) ( (60)V's(zi,00) + vec ((zwo) (@( )))) H (68)
—E Vs (2i,00) (Q(00)Vs(zi,00) + vec” (s(zi,00)'V (Q(60)")))]
LSl vee” (s 00 Q00)'T (Vs (21, 60))) H
N _ 69
—FE [vec ( (2i,00)' Q(00)'V ((VS (2i,00)) ))} o

We show (65), (66), (67), (68), and (69) are O, (l/f) respectively. First, observe that applying the CLT, we have
%Z:L:l [s(2i,00)s(2i,00)'] = E [s(2i,00)s(2i,00)'] + Op (1/4/n) under E [Hs(zz-,@o)Hﬂ < oo and have V (ﬁz(eo)/) =
V (H2(00)") + Op (1/4/n) under E [HV?’s(zi,Oo H } < co. Recalling (41), this implies

b (3570 (@000 2 ) (5 (40))
= (vec (Q 00) = >0 [s(zi,00)s(zi,00)'] (90)) (V (ﬁz(%)')))
(v
c ((

N
<
[
o

c* vec ( )E (%90) (2i,600)'1Q(00)")' (V (H2(60)"))) + Op (1/y/n)
(E[Q(00)s(2i,00) @ Q(00)s(z:, 00)]) (V (H2(00)"))) + Op (1/v/n)

*

N\P—‘N\H m\
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and hence (65) is Op (1/4/n). Now for notational simplicity, define ||A||; = ||A|| and ||A||, = A. Then, for di,dz,d3 €
{0,1}, we have

EE (@) V(a0 ©7 Qo) s(zi00) )|
=E ["Q(Go)d1VS(zi790) ® Q(Ho)dzs(zi,ﬂo)HdJ + 0, (1/4/n)

applying the CLT from
* 2
E {HQ(H())CIIVS(%,@()) ® Q(B0)" (i, 00) ] < 1Q)P M+ B [[[Vs(z1, 60)[1* [ Vs(z, 60)|%] < 00
under [|Q(00)]| < oo, E [[|Vs(zi,00)||*] < oo, and E [||s(zi,00)[|*] < co. Similarly, for i1, 12,13 € {0,1}, we have

A2 || (vee (s21.00) (V Q0D ) &7 Q(60)'*s(z.00) )|
=K [Hvec* (S(Zi,eo)/ (V (Q(@o)l))ll) ® Q(@o)lzs(zi,éo)Hls] + 0, (1/y/n)

by the CLT under
E {Hs(zi,ao)’ (V(Q(00)))" & Q(@o)l2S(Zi,90)H2:| < QW)™ |V (Q(80))]|*"* E [IIVs(2i, 00)II)] < o0

recalling that ||V (Q(60))|| = [|Q(00)||* |[H2(60)|| < co. Applying these two results together with (41), (42), and
Lemma A.8 (b), we have (66) equals to Op (1/4/n) by the Triangle inequality. Similarly we have (67)=0, (1/4/n).
For t1,t2 € {0,1}, now consider we have

S [V 5(,00)Q(00) Vs (a1, ), = B [[|Vs (22, 60)Q(60)" Ts(z1,00) |, | + O (1/v/)

by the CLT under ||Q(60)|** E [\|Vs(zi,90)|\2] < oo and have

3 i [Vt fo)vee (s, 00) (V Q00 )" )|
=k [HVS(zi,eo)vec* (s(zi,é’o)l (V (Q(Go),))tl) tJ + Oy (1/4/n)

by applying the CLT provided that ||V (Q(6o)")||*"* E Vs (2, 00)|I? l|s(zi, GO)HQ] < oo that holds under ||V (Q(60)")|| <
oo, B [HVs(zi,Qo)Hﬂ < 00, and E [||s(zi,t90)\|4] < 00. Applying these two results together with (41) and Lemma A.8
(b), we have (68)=0,, (1/y/n). Finally, for j1,j2 € {0,1}, note
L3 1 |lvee” (s(zi,00)' Q(00)"M'V (Vs (21,600)))) sz
—E [Hvec* (s(zi,00)' Q(00)V'V ((V's (Zi,go))/))H].J +0,(1/y/n)

by the CLT since [|Q(6o)]|* E [Hv?s(zi,eo)nz ||s(zi,90)”2] < 00 holds by [|Q(60)] < oo, E [||v28(zi,90)||4} < oo,
and E [||s(zi, 00)H4] < oco. It implies (69)=0, (1/4/n) together with (41). This completes the proof. m

Lemma A.11 Under Assumption 3.1-3.2 or 8.3-3.2 with > 5, Condition 4 (ii):V32(0) = Op(1) around the neigh-
borhood of 0o is satisfied.

Proof. This can be proved similarly with Lemma A.9 for Condition 3, which is straightforward but still demands
many algebras. Here we provide a simple proof for Condition 1-4 when dim(f) = 1 as an illustrational purpose. With
dim(@) = 1, we can rewrite the correction term (6) as

c(9) = %HQ(G)IQ(O)QE [s(zi, 0)2] + Q(O)E [Vs (zi,0) s(z:,0)]

= same oz L [V?8(2i,0)] B [s(2:,0)*] — gresieran £ (Vs (2, 0) 5(2:,0)] -
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Now define ¢(0) = 7(E [m(z;, 6)])

where T(thtz, t3, t4) = ﬁtztg—%t% t1 = E [VS(Z“ 9)}, to = E [V2s(zi, 9)]7 t3 = E [S(Zi, 9)2], ts = E [VS (21,9) S(Zz‘7 9)}7
and m(z;,0) = (Vs(z,0), V3s(2i,0),5(2:,0)%, Vs (2:,0) 5(2:,0))'. The sample analogue of ¢(0), ¢(0) can be writ-
ten as ¢(f) = (237", m(2,0)) accordingly. Further define m(0) = E[m(z:,0)] (m(9) = L>7  m(z:,0)),

n

_ or(m@(9) [~ _ ar(m(0 _ 9*r(m(8) [~ _ 9%*r(m(o 837 (m(6
T,n(o) = ("L( )) (T'm(0) - %)7 T'mrn(e) - W (TTTL’"L(G) - W% and Tan'm(e) == %
(Trmmm (0) = %) noting 7(-) is a smooth function. Also define Mg (0), Moo (0), and Mg () are the first,

the second, and the third derivative m(6) with respect to 6.
For 6 € ©¢, now consider

aq0) = T(m(0)), VE0) = Tm(0)me(0)
VZEO) = Tmm(0) (Mo(0) @ Me(0)) + T (0)iT00 (0)
V3EO) = Trmm(0) (Me(0) @ Mo (0) @ e (0))
+7mm (0) (Moo (0) ® Mg(0)) + Tmm (6) (Mo () @ Moo (0)) + Tm (0)Ma0e(0)

)
From the Slutsky theorem, it follows that
Tm(0) = Tm(0) + 0p(1), Trmm (0) = Trmm (0) + 0p(1), andTmmm (0) = Trmmm (0) + 0p(1),

since m(0) = m(0) + op(1) by Lemma A.5 under F [SuPeeeo ||Vs(z,-,9)||2] < o0, B [SUPeeeo |V?s(2:,0)||]] < oo,
and E [supyce, s(2:,0)]|’] < oo, if we assume Assumption 3.1. Also it is clear that me(f) = me(0) + o0p(1),
ge(0) = Moe(0) + 0p(1), and Mgee(0) = Moeee(0) + 0p(1) by Lemma A.5 under E[supyeg, HVUs(zi,0)||2} < oo for
0 ={0,1,2,3,4} and E[supyce, ||V’s(2i,0)]]

< 00, if we assume Assumption 3.1. These imply that

A0) = T(w6) = r(m <e>>+op<1>:c<9>+op<1>

Vo) = Tm(0)me(0) = Tm(0)me(0) + 0p(1) = Ve(0) 4 0p(1)
VEO) = Tmm(0 )(me(9)® 0(0)) + Tm (0)me0(6)

= Tmm(0) (M6 (6) © Mo (8)) +Tom (6)6(8) + 0p(1) = VZe(8) + 0p(1)
V3EO) = Trmm(0) (Me(0) @ Mme(h) @ me(0))

(0) (Mo (0) ©
P (6) (706(6) © 0(6)) + Frar(6) (70(6) © Fia0 (6)) + Fo (6) 000 (6)
= Tmmm(0) (Me(0) ® My(0) ® My (0))

+Tmm (8) (Moo () @ T (8)) + Trmum (6) (6 (6) @ o0 () + T (6) 006 (6) = V7c(8) + 0p(1)
uniformly over 6 € ©¢, which imply Condition 1 (i), 2, 3, 4 (ii), respectively. Moreover, it is also clear that m(6y) =
m(00)+0, (1/+/n) by the CLT under E[|[s(zi, 00)||"] < oo, E[||Vs(zi,60)|"] < oo, and E[||V?s(zi, 90)H2} < oo and that
meg(60) = me(00) +O, (1/4/n) by the CLT under E[HV%S(Z@',Q())HAI] < oo for 0 = {0,1,2} and E[||V?s(zi, 90)”2} < 00.

Also note that Ty (00) = Tm (00) + Op (1/4/n) by the Slutsky theorem and m(6o) = m(0o) + Op (1/4/n). These imply
that ¢(0o) = c(6o) + Op (1/4/n) and V(0o) = Ve(6o) + Op (1/4/n), which are Condition 1 (ii) and 4 (i), respectively.
]

Lemma A.12 Under Assumption 3.1-3.2 or 8.3-3.2, Condition 5, 6, 7 are satisfied.
Proof. Condition 5: Note

B(60) — B(60) = Q(o)e 590) Q(60)c(80) + Q(B0)c(B0) — Q(
)

B 0)c(fo)
= Q(60) (e(60) — <(60)) + (Q00) — Q(60)) (6o

0
=0, (1) 0p (1/v/n) + 0 (1//n) ,

since €(fo) — c(f0) = O, (1/4/n) by Condition 1 (ii) and Q(fo) — Q(
Condition 6: From Remark 2, Condition 1 (ii), Condition 4 (i),
V (Q(00)') + O, (1/4/n) by Lemma A.8, we have

Op (1/4/n) by Lemma A.8.

0o) =
Q(80) = Q(00) + 0, (1/+/n), and V (Q(00)') =

VB(0) =V (Q00)e(00) ) = Q(60)Vel6o) +vee” (2(60)'V (Q(60)'))
= Q(00)Ve(bo) + vee (c(60)'V (Q(00)") + Op (1/v/n) = VB(6o) + Op (1/y/n).
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Condition 7: From Remark 1-5, we have

250 = |[v* (2020) | = ||V (o) vecen (m(

< o] [0 +2 ) e+ 570 [0 - o

v (@)

from Remark 2, Lemma A.8, "@(5)“ = Op(1), and Condition 2 and 3. m

B Proofs of Main Lemmas and Propositions

B.1 Lemma 2.1
Proof. Lemma 2.1 (i)
Consider a first order Taylor expansion of 0 = 13"  s(z,60) + (% >r Vs (zq,g)) (5— 90), where 6 lies

between 69 and 9 and hence

Vi (6-0,) = (7% S Vs (z?é)) - % ST s (26,00) (70)

assuming 1 Y% | Vs (zi,g) is nonsingular!. Note that H% >, Vs (zi,g) — E[Vs (2, 00)]H = 0p(1) by Condition
(iii) for v =1 and 6 = 6 + 0,(1). Therefore, by the Slutsky theorem, we have

1
ﬁzizls(zzﬂoﬂ-op(l) =QJ +0p(1), (71)
since we assume J = O,(1) and E[Vs (z,60)] is nonsingular. (71) implies 6 — 6 = O, (ﬁ) Define H;(0) =
% 2is Vs (2i,0) and Hi(fo)(= Q)

around the neighborhood of 6p. This is innocuous, since with probability approaching to one, H, (5) is nonsingu-
lar for & = 6y + o, (1) as long as Hi(fo) is nonsingular. Now note that we can rewrite (71) as \/ﬁ(g— 0()) =

—Hi(00)™* \F r 1 5(zi,00) — (f[l(g)*l - H1(90)71> \FZZ 1 5 (%, 00) from (70). Consider

Vvn (5 - 00) = (—E[Vs(2i,00))) "

E[Vs (2,00)]. In what follows, we treat H;(0) as nonsingular for 6

00 = |
1(00)” ( — Hy( 90)) H.(0)~ (60)~ (Hl(eo) Hl(eo)) Hi(60)7"
H1(00)" |H1 — i(00)|| | @ (60) || || 11 (60) — i (680) ||| 2 (00)

(72)

IN

)

by Triangle Inequality and Cauchy-Schwarz Inequality. Now applying the mean value theorem, we have

"(ﬁlm,n(g)*fflmn (60) )H =5 X 1Vaém(z 2@ - 60)

897‘@ Zza

<

1 n
Se2aim VvV

n

) -] = o [o224] ] -] < -0

where 8 lies between @ and o, f]1m,n(~) denotes the m-th row and the n-th column element of fh(-), Sm (Ziy+)
is the m-th element of s(zi,-), and 6, is the n-th element of . The second equality comes from Condition

4Instead of the usual inverse operator, we can use the Moore-Penrose generalized inverse allowing singularity. Since the
probability of the event that % >, Vs (zi,g) is nonsingular approaches to one as the sample size goes to infinity by Condition
(iii) and (v), we can simply assume nonsingularity. Some technical proof allowing the singularity can be provided as Newey
and McFadden (1994) (see p.2152).
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(iti):]| £ 320 V25 (26,0) — E [V?s (21,00)]|| = 0p(1) for 8 = Oo+0,(1). The last inequality is by E [||V?s(z,60)||] < oo
from Condition (ii). This implies

| (Fmin @) = Himn(00)) | = 05 (1/3/5) (73)
since 6 — 0y = Op(1/4/n). Also from Condition (vii), we have
Vi (Hi(80) = Hi(60)) = V = 0,(1), (74)

By Condition (v) and 6 = 0y + 0,(1), we have Hfh(Go)*lH = 0,(1), 'ﬁl(ﬂé)*
Applying these results together with (73) and (74) to (72), it follows

! = 0y, and [|Ha(00)~] < ox.

Hﬁh(b’ — Hi(00)™ H =0, (1/y/7) (75)
and hence
\/5(9—00) = —Hi(00)" fzz L5 (21, 00) (76)

— (@)~ H00) ) (21.00) = QJ + 0, (1/Vn)

n iy s
noting J = ﬁ > 8(2i,00) = Op(1). This completes the proof of Lemma 2.1 (i). m

Proof. Lemma 2.1 (ii)
Consider a second order Taylor expansion of (2) around the true value of 0 = 0q as

=1 ZZ 18(2‘1790) (% ?:1 VS (22,90)) (5—00
(e ) (-0 o (- w)
where 0 lies between 6o and 9. Now using the stochastic equicontinuity Condition (iv);

% Sy (9% (1,0) - H2(0)) - % S (V25 (24, 00) — Ha(80)) = 0, (1) for 8 = 6o + 0p(1)

we have

(% Z? 1 V2s (z,,g) - %E (21700)) ((5— 90) & (5— 90))

Hy(8) — H2(90)+op(7))((0 9 (9 90))
V(B [V (2,0)])], 50— 00) + 0, () (0-00) ® (9-0))
E [V3s (21,00)] (6 — 90)+ L(1)O ( )+o,,(f))((5790)@;(5790)):op(n*/z),

where the third equality is from standard results on differentiating inside the integral and the Slutsky theorem. We

obtain the second equality by applying the mean value theorem where 0 lies between 0 and 6y. The second last

equality is from the continuity of E [V?s (zi,0)] at 6o and since 6 =00 + op (1). We, thus, obtain
1 1 5
0 =~ s(000)+ (= X0, Vs (z,600) ) (0—00) (77)

43 (2 Vs (ei00)) ((7-00) @ (0-00)) + 0077
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Write 23" | Vs (zi,600) = —Q ' + ﬁv and 13" V?s(z,00) = Ha + ﬁW for Q@ = — (E[Vs(2i,600)]) ",

H,=FE {V25 (zi,t%)], and

V=230 (Vs(2i,00) — E[Vs(2i,00)]) = Op(1)

\/ﬁ

w=-L1 Zl 1 (V s (zi,00) — [VQS (2i,00)]) = Op(1)
from Condition (vii) and (viii). We then obtain
0=2J+ (—Q‘l + ﬁv) (@— 90)
s ) (62w (3-0) o

Now note that we can expand

1 —1
(o) = (mego) o
RZCON
= —Q+ —=QVQ+0,(n7")
—J=QVQ - 2QVQVQ + 0,(n~*/?)

depending on the orders we need. Using this result, from (78) we have

5—00:—(—Q*1+ L V) fg
( Q" +ﬁv) (Ha+ W) ((0-00) @ (0-60)) + 0p(n~*7)
—Q - EQVQ+0,(nY)) &J

(050 () (0 ) (5-0)) 0,0
_QJ+ 2 QVQJ) +1QH, ((a _ 00) ® (5— 90)) +0,(n%?).

Il
A VS |
S‘H IS /\ mw
ok

Now plugging v/n (6 ) = QJ + O, (1/4/n) in (80), we obtain

= (&Q7+2QvQJ) + 21QH: (Vi (0-60) @ v (8- 00) ) + Op(n/2)

%QJJrlQVQJ + 5 3QH2 (QJ + 0, (1/v/n)) ® (QJ + Oy (1/y/n))) +

= (J=QJ+ +QVQJ) + L 1QH2 (QJ ® QJ) + Op(n*/?).
By rearranging (81), we have /n (5— 0()) =QJ+ %Q (VQJ + $H2 (QJ ® QJ)) + Op(n~

B.2 Lemma 2.2

Proof. Consider

BIVQJ) =B [ X (Vs (21,60) = E [V (21,600))) Q (Fr X1y s (20,00) ) |

1).

Op(n

73/2)

(78)

(79)

=E [ X0 (Vs(zi,00) — E[Vs (2i,00)]) Qs (2i,00)] + & > E[(Vs (2i,00) — E[Vs (2,600)]) Qs (25, 60)]

Now noting for i # j, Vs (z:,00) and s (z;,00) are independent by iid assumption, we have

S0, BI(Vs (24,60) — B [Vs (21, 00)]) Qs (25, 60)]

= LS, BIVs (a0,00) — B[V (20,00)]] QB s (25, 60)] = 0
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and hence E [VQJ] = E [vid;]. Similarly

B1Q7®QJ) = E(Q (J5 Ty s (2:00)) © @ (Jr Ty s (. 00)) |
=F I:% :’21:1 QS (21700) ® QS (21790)] + o Zz;&] E [QS (21’90) ® QS (Zjveo)]
= B[Qs (z1,60) ® Qs (21, 00)] = E[(d: @ di)],

since E [Qs (zi,00) @ Qs (z5,00)] = QE [s(zi,00)] ® QE [s (z5,00)] = 0 for i # j by (1). This completes the proof. m

(82)

B.3 Proposition 3.1

Proof. By the first order Taylor series approximation of (9), we have
_ 1 z 5(00) + (= 0, s (2,8) ) (07— 60) - L560) - lva("é) 6" — 60)
i=1 ’ n i=1 ) n n

for § between " and 6o and hence

alo )
== (3T Ve (30) = 700) (G5 Sy o) — o) (8)
=~ (B[Vs (20,00)] +0p(1) + Op (1)) (5 Ty 8 (20.00) + 0y (5 ) ) = @7 + 0p(1),

by Condition 1(i), 2 and @ = 6o + 0, (1) provided that H% > Vs (2i,0) — E[Vs (i, 60)]H = 0,(1) for 0 = 0o +o0p(1).
This confirms that the estimator has the same first order asymptotic distribution as \/ﬁ(g — 6o) in (71). Recalling
Hi(0) = 130 | Vs(2:,0) and H1(00)(= —Q™ ") = E[Vs (2i,00)], we can rewrite (83) as

Vi (07— 0o)

— (H1(00) — 1 Ve(0o)) (% S s (20, 00) — 2=2(00

- ~ -1 _
- ((Hl(e) - lva(a)) — (H1(60) — 1V&(60)) 1)
— (Ha(60) + 0, (1/m)) ™" ( S5 (21, 00) + 0, (1/y/)

Siy 8 (21, 00) = J(60))

N
Nt E‘H

(@ +0,0/m) " = (000 + 0, (1)) (5 Zy 5 e 0) + 0, (1/vD)
=~ (Ha(60) ™" + 1/n)( X1 (21,00) + 0, (1/V))
— (H(0)™ = Hi(00) ™ + 0, (1/m)) (5 L1y 5 (21, 600) + 0, (1/y))
= —Hi(00)" %zhsmeo) (F2(0) " = H(80) ™) &5 i 5 (20,00) + Oy (1/m)
= —Hi(00) ™" = 27y 5 (2i,00) + O, (1/n),

where the second inequality is by Condition 2 and the last equality is obtained by (ﬁl 0)~' — H, (90)71) =0, (1/y/n)
from (75) and \F > 1 5(zi,00) = Op(1) and hence we have

V(07— 60) =QJ+0, (1/Vi). (84)

This implies that 0" and 0 have the same first order asymptotics. In order to analyze the higher order asymptotic
distribution, we make a second order Taylor series expansion:

SO ) (oo o)
0=4{ +3 (230, V%s(2:,0)) ((67—00) ® (67 — 0o : (85)
—13(00) — 1VE(00) (0" — 0o) — iv%(é) ((9 - 90) ® (0* - 90))
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As we rewrite (77) into the form of (78) in Lemma 2.1’s proof, we rewrite (85) as
L+ (- + Lv) (67 —00)
0 = { 41 (Hz + %W) ((9 —0) ® (0* - 00)) — 18(00) — LVE(00) (07 — 6o)
—ﬁvza('é) ((0 - 00) ® (07 — eo)) +0,(n"%?)
L+ (- + L) (67 —00)
+3 (Ha+ W) (67— 00) @ (67 = 0) ) — Le(00) + Op(n =)

(86)

since (a) 1Ve(6o) (0" — 6o) = Op(n=3/?) by Condition 2 and 8 = 6y + O,( 1n) from (83) noting J = O,(1) and
since (b)
959 (7 - (7 -0)|
<& |we @) - 90.‘2 — O(n"H0,(1)0,(n"Y) = 0,(n"?)

by Condition 3 and 6” =05 + O, ().

From (86), by observing that 0" and § have the same first order asymptotics, we obtain

Va0 =) = QI+—=Q (VQJ+ 32 (Q7©QJ) - Ew‘”) o @)

NG
= Q7+ =0 (Var+ 3w (@18 Q) - o)) +0, (1),

as in Lemma 2.1. The second equality comes from Condition 1 (ii) (¢(6o) = ¢(6o) + Op (1/4/n)) and thus the second-
order bias Bias(d') = LEQ(VQJ+ tH2(QJ ®QJ) — c(bo))] = 0 since (noting Q@ = Q(6o) and Hz = Ha (o))

E[VQJ+ iH2(QJ® QJ)]
= E[Vs(2i,00) Q(00)s(z:,00)] + 3 H2E [Q(00)s(zi,00) ® Q (00) s(zi,00)] = ¢ (o)

by definition of ¢(f) in (6) and Lemma 2.2. ®

B.4 Lemma 2.3

Proof. Consider a higher order Taylor expansion of (2) around the true value of = 0o up to the third order as

0= 3 Ty s (o0, 0) + (3 TiLy Vs (26,600)) (8- 0) + § (3 TiLy Vs (21,600)) (0~ 00) © (8- 0) )
w3 (12 T (20) ((0-m) & (1-00) © (- 00)).

where 6 lies between 6o and 6. Now by the stochastic equicontinuity Condition (iii) and 6 = o + 0,(1), we have

=30 (95 (200) = 1 (7)) = 2= T (775 (20 00) = Ho(00) = 0, (1)

and hence
L5 Vs (20,0) = 2500, Vs (24,00)) ((0-00) @ (8-00) @ (6-00))
— (Hs (2) ~ Ha 00) 0, () (- 00) @ (5 00) @ (5 00))
= (V(E[V’s(2:,0)])],_5 (0 — o)

DT e e 0-a)

B[V (21,00)] (0 — 00) + 0p (%)) (0—0 ®(9—00)®(§—00 — 0,(n"2),
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applying the mean value theorem where 0 lies between 0 and 6y and from standard results on differentiating inside

the integral. The second last equality is from the continuity of F [V4s (#, 90)] at 6o and since 6 = 6y + op (1). We,
thus, obtain

&2 8 (2i,00) + (5 200, Vs (24, 600)) (5*90
0= + % " /9\—90 ® /9\—90 .
+1(L 0—060)® (6—06o ®(§—90))+Op(n‘2)
Now note

LY Vs (ain0) = ~Q 7 b 5V, B, Vs (s 00) = Ha o+ LW
%Z?:l VSS (Zi,go) = Hs + %Wg with W3 = ﬁ Z?:l (VBS (27;,00) —F [v38 (2’2790)]) = Op(l).

We then rewrite (87) as
[ (s ) () () (5-0) o 0-)
s s (- sy ) o | *

Plugging (79) into (88) (depending the orders we need) and inspecting the orders, we have

B — 0 (89)

AN

— -1 (_Q71+%V)71 Hz + =W ((5—00 ® (6 — 6o }
(et ) (s o) (3-0) o 5-) = (5-0)) 0,05
— (-0 - £QVQ-1QVQVQ+ 0,)(n ) £ }

- e heva s o) (1 1) ((-0) 5 (5-)
(-0 +0, (&) (Hs+ £ms) (-00) & (9-00) & (7o) ) +0p(n7?)
(£Q7+1QVQJ + 4=Qveva)) }

= { (e (s ) + avom) ((1-m) @ (1-0)) )
+1QH, ((0 - 90) (9 90) (9 90)) +0,(n?)

Now plugging v/n(0 — 0) = a_1/2+Op (1/4/n) or V(0 —6o) = a_y/2+ ﬁa_l + O, (1/n) in (90) depending on the
orders required, we obtain

0 — 0o

(ﬁQJ +1QvQr+ ﬁQVQVQJ)

= +11 (Q (H2+ %) + L\%H?) ((a 12 + \f L+ 0, (2) ) ® (a71/2 + % +Op (%)))
it (s + 05 (22)) @ (0272 + 05 (25)) @ (427204 (35))) + Ost™)
(407 +1ovaes + 32QvQvas

= )+t (Q(H+ EwW) + £Qver) ((ap+ o) @ (s + da)) (1)
+532QHs (a1/2®a 1/3®a_13) + Op(n ~?)
(507 + 3QVQT + 3rQVQVQJ) + §1QH: (a-1/2 ®a-1y2)

= +% > (QH2 ((a—1j2®a-1) + (a1 ®a—1/2)) + (QW + QVQH2) (a_1/2 ® a_1/2))
O, (012 © a1 © a172) + Oyl )
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Finally, rearranging (91) according to the orders, we have

0 — 6o
TQ + Q(VQJ+ 5Ha (a 12 ®a— 1/2))
=\ T (QVQ (VQJ + 5Hs (a—1/2 ® a—1/2)) + 5QW (a—1/2 ® a_1/2))
+ 3 ( QHZ (((1 1/2®a 1)+(a 1®a— 1/2))+%QH3 (a_1/2®a_1/2®a_1/2))+Op(n72)

Il
——
B 3\H

~a_1/2 + Loy
1 @V s+ 3QW (022 ©517) + 3O (3172 0 ) + (01 ©011)) }
( QHs (a_1/2®a_1/2 ®a_1/2)) + Op(n™?)

n3

B.5 Proposition 3.2

Proof. Now consider a third order Taylor series expansion of 0 = 23" s (zi, 9*) - %5(9*):

0:%2?:15(%,90) ( > Vs (2, 00) 0 —6)
(L7, V25 (2, 00)) ((9 760) =)

?S S e () (7)o 0o (1)

(60) — V2 (00) (0 — 0o) — 1LV2E(6o) ((0 - 90) ® (9* — 90))
v%(e) ((0 _ 90) (9 - 6’0) ® (0 _ 00))
From this, similarly with (87) to (88), we obtain

OzﬁJ—i-( Q'+ L) (6*—00)+%(H2+ﬁW)((0*—90)(8(0*—90))

—1 (H3 + L ) ((9 - 90) (9* - 90) ® (9* - eo)) — 18(00) — LVE(00) (0" — 00) + Op(n™2),

11722 (60) ((9* — 00) ® (9* — 60>) = 0,(n~?) by Condition 3 and " = g + OP(%) and since

3?(9) (6" =t0) @ (6 ~t0) @ (6" ~00)) |

0" — 00| =0(n"")0p(1)0y(n"%?) = O,(n~"/?)
vee (@) o —oo] / /

IN

ol

3= Nle
:\'—‘

by Condition 4 (ii) and 8" = 6y + O ( —). Similarly with (89), we obtain

— (@ - £QVQ - 1QVQVQ + 0,(n=*/) £

v | (e ova o) (o) (a0 o (7 )
000 () (s ) (@) w0 ()

+1(~Q = HQVQ+0,(n71))E00) + 1 (-Q+ 0, () ) VE(0) (97 = 80) + Op(n™?)

(&7 +21QVeJ+ 2=QvQveJ)

(0 50) 525 (00 o ()

+1QH; ((9*790) (9*790) (9 790

~1(Q+ 5QvQ) @) — LQVE (o) (0 —90 +0y(

(92)
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Now replacing /a(0" — o) = a_y/s + Oy (ﬁ) or /(6" —00) = a_1js + = (a—1 — Qc(60)) + O, (1) in (92)
depending on the orders required, we obtain

0" — 0o
(407 +1QvaQs + 420vQvQy)

a_1—Qc(fo) -1
QVQHsy (a—1/2+ N +Op (n ))
— +2” (Q (H2+ fW) T 2) ® |a—1/2 + ‘a_l_\/@;(%) +Op ( 71))

w20 ()0 () e, ()

~1(Q+ £QVQ) ath) — -4z QVE () (a71/2+op (&) + 0w
(&Q7+1QvQJs+ 4=Qveval
_ Tl (Q (H2+%)+QV\/QHH2) ((a 1/2+a 1- Qc(eo) (a 1/2+a 1- Qc(eg)))

—&-M%/QQH;’, (a_1/2®a_1/2 ®a_1/2) - = Q+ \FQVQ C( )— 3/2 QVC(@())(I 1/2
+Op(n72)7

where we replaced V¢(6o) with Ve(6o) + Op (%) from Condition 4 (i). Rearranging terms according to the orders,
we have

0 — 90 )
F2QJ 43 (QVQJ + 3QHa(a-1/2 © a-1/2) — Q2(00)
Qvavas s, 3QH: ((a-1/2 ® (a—1 = Qc(60))) + ((a-1 — Qe(00)) ® a—1/2))
= QW+QVQH2) (a-1/2®a_1)2)
+ QH3 a_1/2®a 12 ®@a_1/5) — QVQE(0o) — QVec(fo)a_1)s
7@ +% QVQJ + 3QHz(a-1/2 ® a_1/2) — Qc(bo))
_ QVa_1+ 3QH: ((a-172® (a1 = Qe(00))) + (-1 — Qe(60)) ® a-172))
- 2QW a_1/2 @ a_ 1/2)+ §QHs (a—1/2 @ a2 ® a_y2) +0p(n"?)
c(6o) + Oy ( ))*ch(eo)a—1/27\/>Q( (60) — ¢ (60))
T + (a-1 —QC (00))

{

noting ¢(0o) = ¢ (60) + Oy

a_3/ — 3QH> (a 172 ® Qc(bo)) + (Qc(bo) ® a—1/2)) o2 }
( Q(/QC 90 QVC(/eo)a 1/2 —IQ( ( )_6(0/0)) )+Op( )7

Now we rewrite the hlgher order expansion of 6 in terms of B(6) recalling that Q(0)*B(#) = ¢(0) and hence
Ve(d) = Q(0) 'V B(6) —vec (B(6)'V (Hi(h))) (94)
from Remark 2. From (93), note

N (e* - 90) (95)

a_1/2 + ﬁ (a—1 — Qc(bo))
2 amys — 5QH: ((am12 ® Qe(60) + (Qel00) @ a_1/2)) — QVQe (60) —~ QVe (Bo) a1y2)
~LQun(@60) — c(60)) + Oy (n=/?)
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from (10) and also note that

%QHQ ((a 1/2 ® QC(@O ) C(? ( 0) Ra_ 1/2)) + QVQC (00) + QVC (90) a—1/2

(
= 3QH: ((a-1/2 ® B(6o)) + (B(0o) ® a_1/2)) + QV B (o)
+Q (Q(00) "V B(00) — vee (B(6o)'V (H1 (00)')) ) a-1/2 (96)

Y
= 1QHz ((a-1/>® Qc(f) + (Qc(80) ® a_12)) — Quec” (B(60)'V (Hi (60)')) 172
+VB(bo)a_1/2 + QV B (bo)

from (94) and B(0) = Q(6)c(6). We claim that

Lt (a1 © BO0) + (B(60) © a_1,2)) — vec” (B0o)'Y (Hy (60))) a2 = 0 (o7)
which simplifies (96) to VB(6o)a_1/2 + QV B (o). This is obvious when dim(6o) = 1, since

%HQ ((a—1/2 ® B(60)) + (B(b0) ® a_1/2)) = HaB(0o)a_1/2
and vec (B(Oo)'v (Hl (00)')) a_1/2 = B(0o)Hz2a_1/2 noting V (H1 (00)') = H> for the scalar case. To verify this for
a general case with dim(6p) = k, we note vec(AB) = (I ® A)vec(B) = (B’ ® INvec(A) and hence

5Ha ((a—1/2 ® B(60)) 4 (B(60) ® a_1/2)) = 3 Ha (vec (B(6o)a’, 5) + vec (a_1/2B(00)"))
= %Hz ((I X B(00)) a_1/2 —+ (B(00) X [) a,l/z) = %HQ (I® B(60) + B(Oo) X I) a_y/2.

Thus, (97) follows upon showing (see Appendix B.6)

%Hg (I ® B(6o) + B(6o) @ I) = vec (B(60)'V (Hi (60)')) . (98)

Therefore, we can rewrite (95) as
v (0* - 90)
= a 12+ Jz (01 = B0) + 3 (a2 = VB(Oo)a_jz — Vi(B(0o) ~ B(6o)))
+ % (\f(@(eo) Q(60))c(00) — QV B (6o) ) + Op(n—3/2).

From Lemma B.1 below, we have \/ﬁ(@(Oo) —Q(00))c(00) — QV B (00) = Op (ﬁ) and hence
N (e* - 00) (99)
= aniat = (e = BO0) + (s = VB@0)asya — Vi(B(00) ~ B(E0))) + Op(n™*"%).

This completes the proof. m
Lemma B.1 Suppose Condition 5 holds and V = % » (Vs (zi,00) — E[Vs(2i,00)]) = Op(1), then we have
Vn(Q(0o) — Q(00))c(0o) — QV B (00) = Op (1/v/1).
Proof. From ¢(60) = Q(60) B (o), it follows that
VA(@Q(80) — Q(B0))2l680) = VR(Q(B0) — Q(B0))Q(6
= Q(80)v/nQ(00) " (Q(Bo) — Q(60))Q(0) "B (6) =
= Q00)v/n (H1(00) ~ H1(00)) B (690) = QV B (o) .

The last result is obtained noting V' = f »_ 1 (Vs (zi,00) — E[Vs(zi,00)]) and Hi(6o) =

n

6o) ™
Q(0o

©_ 1 Vs (zi,00) and
hence we have

V(Q(8) — Q(80))e00) ~ QV B (96) = QV (B (60) ~ B (60)) = Oy (1/V)

since V = O,(1) and B (60) — B (60) = O, (1/+/n) by Condition 5. m
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B.6 Derivation of (98)

VHY VH{? ... vHF by
Let Hy = : : : : and B(0o) = b = : ), where HY" is the g-th row and the h-th
VHfY VHF ... vH bi
column element of H;. Note that
VHY VH{Z ... vVHP
3H2 (I ® B(0o) + B(o) ® 1) = 3 : : : : (I ® B(0o) + B(bo) ® )
VHI VHF? ... VHP
VHi'6 VHi’b --- VH"b VHi'6 VH{’» --- VH{"b
_ 1 . . . . + 1 . . . .
2 . . : : 2 . . : :
VHS VHPb ... VHb VHS VHPb ... VHb
VHi' VH{*» --- VH¥b
VHMb VH?b --- VHPb
P h
where the second term in the second equality is obtained from %&? = % which implies a;li” = 8;1;11 for
g, h,pe{1,2,...,k}.
Similarly we obtain
VH1“ vH? ... VH
vec (B(@o)'V (H1 (90)/)) =vec |V : : :
VH”“ VHZ* ... VHr
VH;i!
v :
VHF VH{» VH{?b --- VH{*b
VH! VHs VHFb ... VHb
v :
v H}
oHJP dHJ

for g,h,p € {1,2,...,k} and hence we have established (98).

. )
again noting o0, —
)

B.7 Derivation of the Main Result for the Scalar Case
We derive our main result for the scalar case with dim(fp) = 1 where ¢(f) and c¢(#) are simplified as

c(0) = %H2(9)Q > 15 zl, )) +Q( ) > [Vs(2i,0) s(2:,0)] and
e(9) = E”[ (21,0)] + QO)E [V's (24, 0) (21, 0)].

Note Condition 1-4 are easily verified by the proof of Lemma A.11. We derive the third order stochastic expansion
iteratively. First, consider the first order Taylor series approximation of (9),

- Lo ou (o)) (6 Lo - Lue(3) 6" -
0= 50,5 (x,00) + (E ST, Vs (ze)> (6" — 00) — ~2(0) — -V () (6" —00)
for 6 between 6" and 6o and hence
Jn (0* - 00)

=~ (12 Vs (20,0) - tve ) (

= —(E[Vs(zi,00)] + 0p(1) + Op (1/n))~

Iy 8 (21 0) — J(60)) (100)
(& s (20,00) + 0y (1/V)) = QJ + 0p(1),

T
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by Condition 1(i), 2 and 6 = 6y + 0,(1) noting |£ >0, Vs (2:,0) — E[Vs (2i,00)]|| = 0p(1) for 8 = 60 + 0,(1) by
Lemma A.3 or A.4. Now rewrite (100) as

ﬁ(e* - 00)
— ((00) - L)
— (Hi(00) ™ + 0, (3)) (

= —Hi(00)"'J — (fh(é)* —

T~ Lel00)) - ((ﬁl(é) - v (H1(00) - M)A) (7= &2(00))
740, (ﬁ )~ (@~ w0 +0, () (1+0, (%))
J+0p () = —Hi(80) ™ X0y s (21,60) + O ()

where the second inequality is by Condition 2 and the last equality is obtained by (H1(8) > — Hy(60) ") = O, (1//n)
from (75) and J = O,(1) and hence we have

NG (9* - 90) =QJ + 0, (1/v/n). (101)
Now consider second order Taylor series expansion:

AT e 00) + (3 S0y V(o 0)) 07 = 0) + 3 (A 50, 9% (205) ) (07~ 00)

0= —13(60) — LVE(60) (07 — 00) — ﬁv%('é) (9 - 90) .

(102)

As we rewrite (77) into the form of (78) in Lemma 2.1’s proof, we rewrite (102) as

1 -1, 1 * 1 1 * 2
) () () (s ) (o) i
—13(09) — %va(ao) (0" —00)— 272 (9) (0= 00) +0p(n~*/?)
) .
o () (7 )
+3 (H2+ W) (9 —00) — L@(00) + Op(n~*/?),
since 2V (o) (0" — 60) = O, (n~%?) by Condition 2 and 6~ = 6o + Op(ﬁ) from (101) noting J = Op(1) and since
SO 2 "
ﬁVQE(G) (0 - 90) = “H0,(1)0p(n™1) = Op(n~2) by Condition 3 and 8 = 6y + O, (1/4/n). Multiplying
expansions (as (79)) of (—Q ™' 4+V//n)~" to both sides of (104) depending on orders and replacing \/n (9* — 90) =
QJ + Oy (1/n), we obtain

Vn (9* — 90)

(104)

-

0]
(

QJ + 7 (Q Vit QT _QC(9°)> o (%>

2 3 72 1
QJ + Tn (Q VJ+ 2H2Q J Qc(@o)) + Oy (n) ,
as in Lemma 2.1. The second equality comes from ¢(fg) = ¢(0o) + O, (1/4/n).

Now consider a third order Taylor series expansion of 0 = 23" s (z27 0 ) — L3067):

O: l2?715(21,90)+(%2:;;1 VS(Z;‘,G())) (9* —90) ( ZL 1V S 2‘7,(90 (09 —90)

~ . 3 2
( S Vs (z@)) (9 - 00) — 15(00) — LVE(00) (07 — 00) — 1 1V2(00) (9 - 90)
o) ()
From this, similarly with (102) to (103), we obtain

0= 27+ (@ + &V) (07 —00) + & (Ha v W) (67 —00)
b (s ) (07 - 90)3 — 13(8y) — 1VE(00) (67 — 00) + Op(n™2),

c:\»—‘ c:\

(105)
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* 2 * ~ *
since V2 (6o) (9 — 00) = Op(n~?) by Condition 3 and § = 6o + Op(1/4/n) and since §1V3¢ (9) 6 —03)

. -1
= 0,(n~%/?) by Condition 4 (ii) and 8 = 0y + O,(1/4/n). Multiplying expansions (as (79)) of (—Qf + ﬁV)
to both sides of (105) depending on orders, we obtain

*

0"~ 0y
—(-Q- £QV - L@V 4 0,(n?)) LU
B ~3(-@- £QV+0,(n7Y) (Ha + LW )ge —00)
“i (@00 (35)) (a+ Gowa) (07— o)
+1 (- = HQV +0,(n 1)) 60) + £ (-Q+ 0y () VE(00) (67— 00) + Op(n™2)
{ (@7 + 2@V + 22@v2T) + 5 (Q (M + 5W) + LY (57 —0,)’ }
FEQH; (07— 00) — 1 (Q+ £Q*V) @l60) — 2QVEW0) (07 ~ o) + Op(n?) |

Now replacing v/n (6" — 6o) = a_1/2+0p (1/4/n) or V(0 —6y) = a_1/2+ % (a—1 — Qc(60)) + Op (1/n) depending
on the orders required, we obtain

0 — 6o
(F@7+ 2ar
+ (Q(m+ & ) L@ v) (asjo+ = (a1~ Qe(80)) + 0, (1))
+5n572 QHs (a_1/2 +0, ( 8) 1 (Q n %QQV) a(00)
3 QVE(00) (a 12+ 0y () + Op(n™?)
[ty e s ol ) 2 (o g’
- o QHaa ), — 5 (Q + ﬁQQV) &00) — =z QVe(00)a1/s + Op(n~?) :

2

where we replaced V¢(6o) with Ve(6o) + Op (\%) from Condition 4 (i). Rearranging terms according to the orders,
we have

NG (6* - 90)
=a-1/2 + 7 (a-1 = Qc(60)) + - (a—3/2 — Q*Hac(fo)a—1/2 — Q*Ve (o) — QVe (fo) a—1/2) (106)
— 1Qvn(c(b0) — c(60)) + O ( -3/2),

Now note &(00) = 289, c(09) = SUEU, Ve (o) = TELD - BOO¥C v = —V(5k) = H{?VH: = Q*Hy by

definition of H; and Hj and hence Ve (6p) = %(00) — B(60)H2. Pugging these results into (106), we have

Vi (07 =60) = a 1+ & (a-1 — B(6o))

(107)
+ 2 (a—3/2 = QVB(6o) — VB(6o)a_1/2) — 2Qv/n(2(0o) — c(60)) + Op(n>/?)

noting —Q*Hac(fo) — QVe (o) = —QH2B(6o) — Q (%W - B(OO)HQ) = —VB(0p). Finally consider that

QV/n(@(60) — c(60) = f(@( >< > QO0)c(00)) ~ v (Q(80) ~ Q(60) ) 00)
= Va(B(00) — B(60)) — v (Q(00) — Q(0o) ) (0o)
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and that
Vit (Q(60) - Q(00) ) 2(00)
= —vQ(00) (55 ~ sy ) QUO0)E(00) = v/iQ(60) (H1(60) — Hi(00)) Q6
VB (6

= Q(00) (25 L1y (Vs (24,00) = B[V (21, 00)]) ) Q(00)e(80) = Q(00)V <> QVB(90)+0 (&)

by definition of V and Condition 5:B (6o) = B (o) + O, (1/+/n). Applying these results to (107), we obtain
\/ﬁ (9* — 00) =a-1/2 +4 ﬁ (a,1 — B(eo))
+ 2 (a_s/2 = VB(o)a_1/2) — 2v/n(B(0o) — B(00)) + Op(n~>/?)

and hence y/n (6* — 60) = /n(Oe — 00) + Op(n~3/?).

C Higher Order Variances

Here we derive the analytic forms of the higher order variances for several alternative estimators. Note that
E [(a_1 — B(@o)) (a_1 — B(@O))’] = E[a_1a/,1] — (90) ( ) s [fa 1/2 (a 1 — (90)),] =F [\/ﬁa_l/gal,l],

E |:a_1/2 (a_3/2 — VB(QO)G/_l/g)I] =F [a_1/2a73/2] —-F [a_1/2a71/2] (VB(G())) from E[a71] = B(e()) and E[a_l/g] =
0 and hence

E [a_l/za'_l/Q] + 1 (E [\/ﬁa_m'_l/g} + E [Vna_i2a’ 1))
Agb = +% (E[afla',l] + E [a_g/QaL1/2] + E [a_l/gaL3/2]) .
—B(00)B(0o) — E [a—1/2“L1/2] (VB(bo)) — VB(0o)E [a—1/2a,—1/2]

Rilstone, Srivastava, and Ullah (1996) derive the second-order mean squared error (MSE) of the M-estimator that
solves the moment condition (2). Proposition 3.4 in Rilstone, Srivastava, and Ullah (1996) implies that

1 1 1 _
Ag, =m+ (72 +75) + - (73 +7a+74) — - (B(60)B(60)" + 1 (VB(60))' + VB(60)7;) + O (n™?)
where (denoting the expectation of a function A(6) as A(6) = E[A(0)] for notational convenience)

_ - 1
no= ddn=Q {vldlda + 5 Ha(d ®d1>da}

Q {vldldgvg + 0dadi 0], + vldgdgv;} Q

+QH: {(di ® ) (&g @ &) + (o © d) (df @ ) + (ds © o) (d; & ;) | H3Q'
—Q {mdl (dy ® dy) + v1da (dy, ® db) + vids (df ® d;)} HLQ'

—QH> {dl ® didyvl + (d1 @ do) d, 0}, + (dh ® da) dgv;} o’

Y3 =

Q {ulQuldzdg + 01Quadidl + levzdgd’l}

+%Q v1QH2 (d1 ® d2) dy + viQH2 (d2 ® d1) dy + viQH2 (d2 ® d2) d'l}

+1Q gwl (di @ da) db + w1 (d2 @ dv) dy + w1 (d2 @ dz) d’l}

+1QH: {(di ® Quida) d + (di © Quady) db + (d1 ® Quads) dg}

+iQH2 di @ QH> (dy ® d2) db + d1 ® QH2 (d2 @ d1) dy + d1 ® QHs (d2 ® d2) d'l}
+1QH, {(QVidi @ do) dj + (QVidz ® di) d + (QVida ® da) d;}

JriQHz (QH2 (d1 ®d1) ® d2)dsy + (QH2 (dh1 ® d2) @ d1) dy + (QH2 (d1 ® d2) ® d2) dll}
+1QH; {[di @ di @ do] df + [dh ® do ® da] d} + [d1 ® da ®d2]d’1}
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for di = Qs(zi,00), vi = Vs(2i,00) — E [Vs(zi,00)] and w; = V?s(zi,00) — E [V?s(zi,00)]. We also note B(6o) =
(Quidi + $H2dy ® d1) from Lemma 2.2. Finally we derive VB(6) as follows. Noting vec™ (s(zi,00)'V (Q(60)")) =
vec® (s(zi,00)'Q QH>) from Remark 5, similarly with (38), we can show

Ve(0o) = Lvec ((Tz1 ®d) v (HQ(e)’)|9=90) + 1H; (el ® di + vec* (d,QH2) ® dl)
+1H, (d1 ® e1 + di ® vec* (d QHz)) + Vs1 (e1 + vec* (d)QHo)) + vec* (dll V ((Vs1(6))) |9:90)

by inspecting (59) where ey = QVs(z1,00), Vs1(8) = Vs(z1,0) and Vsi = Vs(z1,6p). Combining this result with
VB(60) = Q(00)Ve(o) +vee (c(00)'V (Q(6o)')) and B(6o) = Q {vidy + L Hodi @ di }, we obtain
VB(0o) = Q(80)Ve(8o) +vec (c(60)'V (Q(60)'))
= Q(00)Ve(fo) + vee (c ( 0)' Q' QHz) = Q(00)Ve(fo) + vec (B(60) QHs)
1Quec” ( (i @di) (HQ(e)')|6:00) +1QH, (61 ® di + vee (d,QH2) & dl)
= +1QH, (d1 ® e1 + d1 ® vec* (d’lQHz)) + e1 (e1 + vecr (d{QH2))
(& ¥ ((V51(0))],_y, ) +vec” ({div + S(dr @ ) H3 } Q'QH:)

+Quec*
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