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FORECASTING REALIZED VOLATILITY USING A
NONNEGATIVE SEMIPARAMETRIC MODEL

DANIEL PREVE, ANDERS ERIKSSON, AND JUN YU

Abstract. This paper introduces a parsimonious and yet flexible nonneg-
ative semiparametric model to forecast financial volatility. The new model
extends the linear nonnegative autoregressive model of Barndorff-Nielsen &
Shephard (2001) and Nielsen & Shephard (2003) by way of a power transfor-
mation. It is semiparametric in the sense that the dependency structure and
distributional form of its error component are left unspecified. The statisti-
cal properties of the model are discussed and a novel estimation method is
proposed. Simulation studies validate the new estimation method and sug-
gest that it works reasonably well in finite samples. The out-of-sample per-
formance of the proposed model is evaluated against a number of standard
methods, using data on S&P 500 monthly realized volatilities. The com-
peting models include the exponential smoothing method, a linear AR(1)
model, a log-linear AR(1) model, and two long-memory ARFIMA models.
Various loss functions are utilized to evaluate the predictive accuracy of
the alternative methods. It is found that the new model generally produces
highly competitive forecasts.

Key words and phrases. Autoregression, nonlinear/non-Gaussian time series, realized
volatility, semiparametric model, volatility forecast.
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1. Introduction

Financial market volatility is an important input for asset allocation, invest-

ment, derivative pricing, and financial market regulation. Not surprisingly,

how to model and forecast financial volatility has been a subject of extensive

research. Numerous survey papers are now available on the subject, with hun-

dreds of reviewed research articles. Excellent survey articles on the subject

include Bollerslev, Chou & Kroner (1992), Bollerslev, Engle & Nelson (1994),

Ghysels, Harvey & Renault (1996), Poon & Granger (2003), and Shephard

(2005).

In this extremely extensive literature, ARCH and stochastic volatility (SV)

models are arguably the most popular parametric tools. These two classes of

models are motivated by the fact that volatilities are time-varying. Moreover,

they offer ways to estimate past volatility and forecast future volatility from

return data. In recent years, however, many researchers have argued that one

could measure latent volatility by realized volatility (RV), see e.g. Andersen,

Bollerslev, Diebold & Labys (2001, ABDL hereafter) and Barndorff-Nielsen

& Shephard (2002), and then build a time series model for volatility fore-

casting using observed RV, see e.g. Andersen, Bollerslev, Diebold & Labys

(2003). An advantage of this approach is that “models built for the realized

volatility produce forecasts superior to those obtained from less direct meth-

ods” (ABDL 2003). In an important study, ABDL(2003) introduced a new

Gaussian time series model for logarithmic RV (log-RV) and established its

superiority for RV forecasting over some standard methods based on squared

returns. Their choice of modeling log-RV rather than raw RV is motivated by

the fact that the logarithm of RV, in contrast to RV itself, is approximately
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normally distributed. Moreover, conditional heteroskedasticity is greatly re-

duced in log-RV.

Following this line of thought, in this paper we introduce a new time series

model for RV. For S&P 500 monthly RV, we show that although the distri-

bution of log-RV is closer to a normal distribution than that of raw RV, nor-

mality is still rejected at all standard significance levels. Moreover, although

conditional heteroskedasticity is reduced in log-RV, there is still evidence of re-

maining conditional heteroskedasticity. These two limitations associated with

the logarithmic transformation motivate us to consider a more flexible trans-

formation which is closely related to the well known Box-Cox transformation

– the power transformation. In contrast to the logarithmic transformation,

the power transformation is generally not compatible with a normal error

distribution as the support for the normal distribution covers the entire real

line. This well known truncation problem inherent to the power and Box-Cox

transformations further motivates us to use nonnegative error distributions.

The new model is flexible, parsimonious, and has a simple forecast expression.

Moreover, the numerical estimation of the model is very fast and can easily be

implemented using standard computational software.

The new model is closely related to the linear nonnegative models described

in Barndorff-Nielsen & Shephard (2001) and Nielsen & Shephard (2003). In

particular, it generalizes the discrete time version of the nonnegative Ornstein-

Uhlenbenck process of Barndorff-Nielsen & Shephard (2001) by (1) applying

a power transformation to volatility and (2) leaving the dependency structure

and the distribution of the nonnegative error term unspecified. Our work is

also related to Yu, Yang & Zhang (2006) and Goncalves & Meddahi (2006)

where the Box-Cox transformation is applied to stochastic volatility and RV,
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respectively. The main difference between our model specification and theirs is

that a unspecified (marginal) distribution with nonnegative support, instead

of the normal distribution, is induced by the transformation. Moreover, our

model is loosely related to Higgins & Bera (1992), Hentschel (1995) and Duan

(1997) where the Box-Cox transformation is applied to ARCH volatility, and

to Fernandes & Grammig (2006) and Chen & Deo (2004). Finally, our model

is related to a recent study by Cipollino, Engle & Gallo (2006) where an

alternative model with nonnegative errors is used for RV. The main difference

here is that the dynamic structure for the transformed RV is linear in our

model, whereas the dynamic structure for the RV is nonlinear in theirs. In the

terminology of Fan, Fan & Jiang (2007), our approach is in the time domain,

but it can easily be integrated with methods in the state domain.

The proposed model is estimated using a two-stage estimation method. In

the first stage, a nonlinear least squares procedure is applied to a nonstandard

objective function. In the second stage an extreme value estimator is applied.

The finite sample performance of the proposed estimation method is examined

via simulations.

The new specification is used to model and forecast S&P 500 monthly RV.

Its forecasting performance is compared to a number of standard time series

methods previously used in the literature, including the exponential smoothing

method and two logarithmic long-memory ARFIMA models. Under various

evaluation criteria, we find that our simple nonnegative model generally pro-

duces highly competitive forecasts.

While our model is related to several models in the literature, to the best

of our knowledge, our specification is new in two ways. First, it is based on

the power transformation. Second, the distribution and dependency structure
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of its error component are unspecified. Also, it appears that our paper is the

first to establish the empirical usefulness of a nonnegative process for financial

time series. Moreover, the estimation method that we introduce is new.

The paper is organized as follows. Section 2 motivates and presents the new

model. In Section 3 a novel estimation method is proposed to estimate the

parameters of the new model, and its finite sample performance is examined

via simulations. Section 4 outlines the competing models for volatility fore-

casting and Section 5 presents the loss functions used to assess their forecast

performances. Section 6 describes the S&P 500 realized volatility data and

the empirical results. Finally, Section 7 concludes the paper.

2. A Nonnegative Semiparametric Model

Before introducing the new model, we first review two related time series

models previously used in the volatility literature, namely, a simple nonnega-

tive autoregressive (AR) model and the Box-Cox AR model.

2.1. Some Existing Time Series Models for Volatility. Barndorff-Nielsen

& Shephard (2001) introduced the following continuous time model for volatil-

ity, σ2(t),

(2.1) dσ2(t) = −λσ2(t)dt + dz(λt), λ > 0

where {z} is a Lévy process with independent nonnegative increments which

ensures the positivity of σ2(t) (see Equation (2) in Barndorff-Nielsen & Shephard

2001). Applying the Euler approximation to the continuous time model in (2.1)

yields the following discrete time model

(2.2) σ2
t+1 = φσ2

t + Vt+1,
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where φ = 1− λ and Vt+1 = z[λ(t + 1)
]
− z(λt) is a sequence of independent

identically distributed (iid) random variables whose distribution has a nonneg-

ative support. A well known nonnegative random variable is the generalized

inverse Gaussian, whose tails can be quite fat. Barndorff-Nielsen & Shephard

(2001) discuss the analytical tractability of this model. In the case when Vt+1

is exponentially distributed, Nielsen & Shephard (2003) derive the exact fi-

nite sample distribution of an extreme value estimator of φ for the stationary,

unit root and explosive cases.1 Simulated paths from Model (2.2) typically

match real realized volatility data very well. See, for example, Figure 1(c)

in Barndorff-Nielsen & Shephard (2001). Unfortunately, so far no empirical

evidence that establishes the usefulness of this model has been reported.

Two restrictions seem to apply to Model (2.2). First, since {Vt+1} is an

iid sequence, conditional heteroskedasticity is not allowed in the specification.

However, conditional heteroskedasticity in volatility is well documented empir-

ically. Important volatility models with conditional heteroskedasticity include

the ones by Heston (1993) and Meddahi & Renault (2004). The second restric-

tion in the specification concerns the ratio of two successive volatilities. More

specifically, from (2.2) it can be seen that σ2
t+1/σ

2
t is bounded from below by φ,

almost surely, implying that σ2
t+1 cannot decrease by more than 100(1− φ)%

compared to σ2
t . Since the parameter φ in the model is typically estimated by

an extreme value method, in practice, this restriction is automatically satis-

fied by construction. For example, the estimate of φ in our empirical study

is 0.2615, implying that σ2
t cannot decrease by more than 73.85% from one

time period to the next. Indeed, 73.85% is the maximum percentage drop in

1See Section 3 for a detailed discussion on the extreme value estimator.
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successive monthly volatilities in the sample, which took place on November

1987.

In a discrete time framework, a popular parametric time series model for

volatility is the lognormal SV model of Taylor (1986) given by

Xt = σtεt,(2.3)

ln σ2
t = µ + φ(ln σ2

t−1 − µ) + ηt,(2.4)

where Xt is the return, σ2
t is the latent volatility, and {εt} and {ηt} are two

uncorrelated sequences of independent zero-mean Gaussian random variables.

In this specification volatility clustering is modeled as a first-order autoregres-

sion for the log-volatility. The logarithmic transformation in (2.4) serves three

important purposes. First, it ensures the positivity of σ2
t . Second, it reduces

heteroskedasticity. Third, it induces normality.

Yu et al. (2006) introduce a closely related SV model by replacing the log-

arithmic transformation in Taylor’s volatility equation with the more general

Box-Cox transformation Box & Cox (1964),

(2.5) h(σ2
t , λ) = µ + φ

[
h(σ2

t−1, λ)− µ
]
+ ηt,

where

(2.6) h(x, λ) =

{
(xλ − 1)/λ, λ 6= 0

ln x, λ = 0.

Compared to the logarithmic transformation, the Box-Cox power transforma-

tion provides a more flexible way to induce normality and reduce heteroskedas-

ticity. A nice feature of the Box-Cox model is that it includes several stan-

dard specifications as special cases, including the logarithmic transformation

(λ = 0) and a linear specification (λ = 1). In the context of SV, Yu et al. (2006)

document empirical evidence against the logarithmic transformation. Chen &
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Deo (2004) and Goncalves & Meddahi (2006) are interested in the optimal

power transformation. In the context of RV, Goncalves & Meddahi (2006)

find evidence of non-optimality for the logarithmic transformation. They fur-

ther report evidence of negative values of λ as the optimal choice under various

data generating processes. Our empirical results reinforce this important con-

clusion, although our approach is vastly different.

While both the nonnegative model and the Box-Cox model have proven

useful for modeling volatility, nothing is documented on their usefulness for

forecasting volatility. Moreover, it is well known that the Box-Cox transforma-

tion is incompatible with a normal error distribution. This is the well known

truncation problem associated with the Box-Cox transformation in the context

of Gaussianity.

2.2. Realized Volatility. In the ARCH or SV models, volatilities are esti-

mated parametrically from returns observed at the same frequency. In recent

years, it has been argued that one can measure volatility in a model-free frame-

work using an empirical measure of the quadratic variation of the underlying

efficient price process, that is, RV. RV has several advantages over ARCH and

SV models. First, by treating volatility as directly observable, RV overcomes

the well known curse-of-dimensionality problem in the multivariate ARCH or

SV models. Second, compared with the squared return, RV provides a more

reliable estimate of integrated volatility. This improvement in estimation nat-

urally leads to gains in volatility forecasting.

Let RVt denote the RV at a lower frequency (say daily or monthly) and

p(t, k) denote the log-price at a higher frequency (say intra-day or daily).
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Table 1. Summary statistics for S&P 500 monthly RV, log-RV
and power-RV. JB is the p-value of the Jarque-Bera test under
the null hypothesis that the data are from a normal distribution.

Mean Med Max Skew Kurt JB

RV 0.0037 0.0033 0.0256 3.3073 28.7912 0.000

log-RV -5.6873 -5.7257 -3.6661 0.3887 3.6574 0.000

power-RV 4.8939 4.9123 6.9076 0.0320 3.2879 0.277

Then RVt is defined by

(2.7) RVt =

√√√√ N∑
k=2

[
p(t, k)− p(t, k − 1)

]2
,

where N is the number of higher frequency observations in a lower frequency

period.2

The theoretical justification of RV as a measure of volatility comes directly

from standard stochastic process theory, according to which the empirical qua-

dratic variation converges to integrated volatility as the infill sampling fre-

quency goes to zero (ABDL 2001, Barndorff-Nielsen & Shephard 2002, Jacod

1994). The empirical method inspired by this consistency has recently become

more popular with the availability of ultra high frequency data.

In a recent important contribution, ABDL (2003) show that a Gaussian

long-memory model for the logarithmic daily realized variance provides more

accurate forecasts than the GARCH(1,1) model and the RiskMetrics method

of J.P. Morgan (1996). The logarithmic transformation is used since it is

2In ABDL (2003) RV is referred to as the realized variance,
∑N

k=2[p(t, k)− p(t, k − 1)]2.
Although the authors build time series models for the realized variance, they forecast the
realized volatility. In contrast, the present paper builds time series models for, and forecasts,
the realized volatility, which seems more appropriate. Consequently, the bias correction, as
described in ABDL (2003), is not needed.
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found that the distribution of logarithmic realized variance, but not of real-

ized variance, is approximately normal. In Table 1, we report some summary

statistics for monthly RV, log-RV and power-RV for the S&P 500 data over

the period Jan 1946-Dec 2004, including the skewness, kurtosis and p-values

of the Jarque-Bera test statistic for normality.3 For RV, the departure from

normality is overwhelming. While the distribution of log-RV is much closer to

a normal distribution than that of RV, there is still strong evidence against

normality.

In order to compare the conditional heteroskedasticities, in Figure 1 we plot

the squared residuals (ε̂2
it), obtained from the AR(1) regressions for RV, log-RV

and power-RV, respectively, against each corresponding explanatory variable

(lagged RV, log-RV and power-RV). For ease of comparison, superimposed are

smooth curves fitted using the LOESS method. It is clear that while the loga-

rithmic transformation reduces the conditional heteroskedasticity there is still

evidence of conditional heteroskedasticity in the residuals. The power trans-

formation further reduces the conditional heteroskedasticity of RV. While the

logarithmic transformation reduces the impact of large observations (extreme

deviations from the mean), the second plot of Figure 1 suggests that it is not as

effective as anticipated. In contrast, the power transformation with a negative

power parameter is able to reduce the impact of large observations further.

Thus, the results indicate that there is room for further improvements over

the logarithmic transformation. A more detailed analysis of the S&P 500 data

is provided in Section 6.

3The power parameter is -0.2780 which is the estimate of λ in the proposed model obtained
using the entire S&P 500 monthly RV sample; see sections 3 and 6 for further details.
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Figure 1. Plots of the squared residuals, obtained from the
AR(1) regressions for RV, log-RV and power-RV, respectively,
against each corresponding lagged explanatory variable. Super-
imposed are smooth curves fitted using the LOESS method.

2.3. The Nonnegative Semiparametric Model–NonNeg. In this paper,

we focus on modeling and forecasting RV. Let us first consider the RV version
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of Model (2.5),

(2.8) h(RVt, λ) = α + βh(RVt−1, λ) + εt, t = 2, ..., T

where {εt} is a sequence of independent N(0, σ2
ε) distributed random variables

and h(x, λ) is given by (2.6).

If λ 6= 0, we may rewrite (2.8) as

(2.9) RV λ
t = (λα + 1) + β(RV λ

t−1 − 1) + λεt,

where RV λ
t is a simple power transformation. A special case of (2.9) is the

linear Gaussian AR(1) model when λ = 1:

(2.10) RVt = (α + 1) + β(RVt−1 − 1) + εt.

If λ = 0 in (2.8), we have the log-linear Gaussian AR(1) model previously used

in the literature:

(2.11) ln RVt = α + β ln RVt−1 + εt.

While the specification in (2.8) is more general than the log-linear Gaussian

AR(1) model (2.11), it has two potential drawbacks. First, in general, the

right hand side of (2.9) has to be nonnegative with probability 1. This re-

quirement is violated since a normal error distribution has a support covering

the entire real line. Second, the model imposes a simple AR(1) structure for

the transformed RV. While an AR(1) structure typically is the most important

component in capturing the volatility dynamics, the actual dynamic proper-

ties of volatility can be more complicated. See Chernov, Gallant, Ghysels &

Tauchen (2003) and ABDL (2003) for evidence against the simple AR(1) struc-

ture. In ABDL (2003) the AR(1) specification is augmented with a fractional

integrated component to induce long memory in the logarithmic daily RV.
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These two drawbacks motivates us to explore an alternative model specifi-

cation for RV. Our nonnegative (NonNeg) model is of the form

(2.12) RV λ
t = φRV λ

t−1 + Vt, t = 2, ..., T

where λ 6= 0, φ > 0 and the initial value RV1 is positive with probability 1.

{Vt} is assumed to be a sequence of m-dependent, identically distributed, con-

tinuous random variables with nonnegative support [γ,∞), for some unknown

γ ≥ 0. It is assumed that m ∈ N is finite and potentially unknown. Hence,

the specifics of the dependency structure of Vt is left unspecified. So is the

distribution of Vt.

The nonnegative restriction on the support of the error distribution ensures

the positivity of RV λ
t . Hence, our model does not suffer from the truncation

problem in the classical Box-Cox model (2.8). When Vt is serially dependent,

the dynamics of RV λ
t are more complex than the dynamics of an AR(1) model.

As the distribution of Vt is left unspecified, some very flexible tail behavior

is allowed for. Consequently, both drawbacks in the classical Box-Cox model

(2.8) are addressed in the NonNeg model.

One role that the transformation parameter, λ, plays in our model is to sta-

bilize the variance, i.e. to induce homoskedasticity (cf. Figure 1). An intercept

in the model is superfluous because γ can be strictly positive.

If m = 0, our model echoes Equation (2.8) where the normal distribution in

(2.8) is replaced with a nonnegative error distribution. If, in addition, λ = 1,

our model becomes the discrete time version of Equation (2) in Barndorff-

Nielsen & Shephard (2001).

In general, neither the dependency structure nor the distributional form is

assumed to be known for the error component. Hence, the NonNeg model

combines a parametric component for the persistence with a nonparametric
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component for the error. On the one hand, the new model is highly parsimo-

nious. In particular, there are only two parameters that have to be estimated

for the purpose of volatility forecasting, namely φ and λ. On the other hand,

the specification is sufficiently flexible for modeling the error. For example,

Vt is not required to have finite higher order moments and can hence eas-

ily incorporate jumps. The specification also allows for a more acute “peak”

around the mean. Typically, an additive or multiplicative MA(m) structure

may be assumed for Vt, the purpose of which is to capture any remaining serial

dependence left uncaptured by the autoregressive component.

As mentioned earlier, there exists a lower bound for the percentage change

in volatility in Model (2.2). A similar bound applies to our model. It is easy to

show that RVt/RVt−1 ≤ φ1/λ if λ < 0 (upper bound), and RVt/RVt−1 ≥ φ1/λ

if λ > 0 (lower bound). Typical estimated values of φ and λ in (2.12) for our

empirical study are 0.639 and -0.278, respectively, implying that RVt cannot

increase by more than 500% from one time period to the next. As we will see

later, our proposed estimator for λ depends on the ratios of successive RV’s

and hence the bound is endogenously determined.

3. Robust Estimation & Forecasting

3.1. Estimation of φ. For the exceptional situation when λ is known, we

propose to estimate φ using the extreme value estimator (EVE) defined by

(3.1) φ̂ = min

{
RV λ

t

RV λ
t−1

}T

t=2

.

This estimator is the maximum likelihood estimator (MLE) of φ when the

errors in (2.12) are independent exponentially distributed random variables

Nielsen & Shephard (2003). Interestingly, the EVE is strongly consistent for

more general error specifications under a set of mild conditions Preve (2008).
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It is robust in the sense that the conditions allow for certain model misspeci-

fications in Vt. For example, the order of m-dependence in the errors and the

conditional distribution of RVt may be incorrectly specified. Moreover, the

EVE is strongly consistent even under quite general forms of heteroskedastic-

ity. For a more detailed account of the EVE, see Preve (2008).

Like the well known ordinary least squares (OLS) estimator, the EVE is

distribution-free in the sense that its consistency does not rely on a particular

distributional assumption for the error component. However, the EVE is in

many ways superior to the OLS estimator. For example, its rate of convergence

can be faster than Op(T
−1/2) even when φ < 1, whereas the OLS estimator

converges faster than Op(T
−1/2) only when φ ≥ 1 Phillips (1987). Furthermore,

unlike the OLS estimator the consistency conditions of the EVE do not involve

the existence of any higher order moments.

Under additional technical conditions, Davis & McCormick (1989) and Fei-

gin & Resnick (1992) obtain the limiting distribution of a linear programming

estimator (LPE) for which the EVE in (3.1) appear as a special case when

λ = 1 and the errors are iid (i.e. 0-dependent). The authors show that the

accuracy of the LPE depends on the index of regular variation at zero (or infin-

ity) of the error distribution function. For example, for standard exponential

errors, the index of regular variation at zero is 1 and the LPE/EVE converges

to φ at the rate of Op(T
−1). In general, a difficulty in the application of the

limiting distribution is that the index of regular variation at zero appears both

in a normalizing constant and in the limit. Datta & McCormick (1995) avoid

this difficulty by establishing the asymptotic validity of a bootstrap scheme

based on the LPE.
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It is readily verified that the EVE is positively biased and nonincreasing in

T , that is, φ < φ̂T2 ≤ φ̂T1 with probability 1 for any T1 < T2.
4 Hence, the

accuracy of the EVE either remains the same or improves as the sample size

increases (cf. Figure 2).

To understand the robustness of the EVE, consider the covariance stationary

AR(1) model

RVt = φRVt−1 + Vt, t = 0,±1,±2, ...

under the possible model misspecification

Vt = Zt +
m∑

i=1

θiZt−i,

where {Zt} is a sequence of non-zero mean iid random variables. For m > 0

the identically distributed errors Vt are serially correlated. In this setting the

OLS estimator of φ is inconsistent while the EVE remains consistent. In the

first panel of Figure 2 we plot 100 observations simulated from the nonnegative

ARMA(1,1) model, RVt = φRVt−1 + Zt + θZt−1 with φ = 0.5, θ = 0.75 and

standard exponential noise. In the second panel of Figure 2 we plot the paths

of the recursive EVEs and the recursive OLS estimates for φ obtained from

the simulated data. In each pass, a new observation is added to the sample.

It can be seen that the EVEs quickly approach the true value of φ, whereas

the OLS estimates do not. Additionally, the OLS estimates fluctuate much

more than the EVEs when the sample size is small, suggesting that in small

samples the EVE is less sensitive to extreme deviations from the mean than

the OLS estimator.

We now list the conditions under which the consistency of the EVE holds.

The proof of the proposition is found in Preve (2008).

4Whenever necessary we use the subscript T to emphasize on the sample size.
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Figure 2. The top panel displays a time series plot of data
simulated from the nonnegative ARMA(1, 1) process RVt =
φRVt−1 + Zt + θZt−1 with φ = 0.5, θ = 0.75 and iid standard
exponential noise. The bottom panel displays the paths of re-
cursive EVEs and OLS estimates for φ in the misspecified AR(1)
model RVt = φRVt−1 +Zt, obtained from {RV1, ..., RVT}, where
T ∈ {3, ..., 100}. The solid line represents the EVEs and the
dash-dotted line represents the OLS estimates.

Condition 1. In Model (2.12), λ 6= 0, φ > 0 and the initial value RV1 is al-

most surely positive; {Vt} is a sequence of m-dependent, identically distributed,

nonnegative continuous random variables.

Condition 2. The error component in Model (2.12) satisfies

P (c1 < Vt < c2) < 1,

for all 0 < c1 < c2 < ∞.
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It is important to point out that Condition 2 is satisfied for any error dis-

tribution with unbounded nonnegative support.

Proposition 3.1. Denote the EVE in (3.1) by φ̂T . Under conditions 1 and

2, φ̂T
a.s.−→ φ as T →∞.

3.2. Estimation of φ and λ. In practice, we do not know the true value of

λ. In this section we propose an EVE based two-stage estimation method for

λ and φ in Model (2.12). The estimators are easily computable using standard

computational software such as Matlab. In doing so, we also establish an ex-

pression for its one-step-ahead forecast. We then investigate the finite sample

performance of the proposed estimation method via Monte Carlo simulations.

Estimation of λ and φ is non-trivial, even under certain parametric and

simplifying assumptions about Vt. For example, if {Vt} is a sequence of inde-

pendent exponentially distributed random variables it can be shown that the

MLEs of λ and φ are inconsistent.5

In our EVE based two-stage estimation method, we first choose λ̂ to mini-

mize the sum of squared one-step-ahead prediction errors

λ̂T = arg min
λ∈Λ

T∑
t=2

[
RVt − R̂V t(λ)

]2
,

where

R̂V t(λ) =
1

T − 1

T∑
s=2

[
φ̂(λ)RV λ

t−1 + V̂s(λ)
]1/λ

,

φ̂(λ) = min

{( RVt

RVt−1

)λ
}T

t=2

and V̂s(λ) = RV λ
s − φ̂(λ)RV λ

s−1,

5This result also applies to the standard nonlinear least squares (NLS) estimator that
minimizes

∑
t(RV λ

t − φRV λ
t−1)

2. In this case the resulting estimator of λ and φ is always 0
and 1, respectively.
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respectively. The intuition behind the proposed estimation method is that

we expect R̂V t

(
λ̂T

)
to be close E(RVt | RVt−1) as T is large. This is not

surprising since Model (2.12) implies that

RVt =
(
φRV λ

t−1 + Vt

)1/λ
,

and

E (RVt | RVt−1) = E
[(

φRV λ
t−1 + Vt

)1/λ | RVt−1

]
.

In the second stage, we use the EVE to estimate φ,

φ̂T = φ̂
(
λ̂T

)
= min

{( RVt

RVt−1

)λ̂T

}T

t=2

.

While we minimize the sum of squared one-step-ahead prediction errors when

estimating λ, other criteria, such as minimizing the sum of absolute one-step-

ahead prediction errors, can be used. We have experimented with absolute

prediction errors using the S&P500 data and found that our out-of-sample

forecasting results for the NonNeg model are quite insensitive to the choice of

the objective function in the estimation stage. However, the objective function

with squared prediction errors performs better in simulations. It is important

to use the EVE estimator for φ due to its robustness property with respect to

serial dependence in Vt.

With an estimated λ and φ, the proposed one-step-ahead semiparametric

forecast expression for the NonNeg model is

R̂V T+1 =
1

T − 1

T∑
s=2

(
φ̂T RV λ̂T

T + V̂s

)1/λ̂T ,

where V̂s = RV λ̂T
s −φ̂T RV λ̂T

s−1 is the residual at time period s. Of course, in line

with Granger & Newbold (1976), several forecasts of RVT+1 may be consid-

ered. For example, one could base a forecast on the well known approximation

E[h(Y )] ≈ h[E(Y )] using h(y) = y1/λ. However, this approximation does not
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take into account the nonlinearity of h(y). For instance, if Y ∼ N(0, σ2) and

h(y) = y2 then E[h(Y )] = σ2 6= h[E(Y )] = 0.

3.3. Monte Carlo Evidence. In the special case of a nonnegative AR(1)

model with iid exponential errors, the distribution of the EVE estimator for

φ is nonstandard and asymptotically exponential Nielsen & Shephard (2003).

Since our estimator is EVE-based, its asymptotic distribution is likely to be

nonstandard and difficult to obtain. Instead of establishing the limiting dis-

tribution of the proposed estimators for λ and φ, we examine the performance

of our estimation method via simulations.

We designed two experiments in which data are generated by the nonnega-

tive model

RV λ
t = φRV λ

t−1 + Zt + θZt−1, t = 2, ..., T

with iid standard exponential driving noise Zt. The parameters λ and φ were

estimated using the proposed two-step method of Section 3.2.

In the first Monte Carlo experiment the true values were set to λ = −0.45,

φ = 0.58 and θ = 0.05. In the second experiment the true parameter values

are λ = −0.28, φ = 0.64 and θ = 0.15. The values chosen for λ and φ in

the experiments are empirically realistic (cf. the results of Section 6). We

consider sample sizes of T = 200, 400 and 800. The sample size of 400 is close

to the smallest sample size used for estimation in our empirical study, while

the sample size of 800 is close to the largest sample size in the study.

Simulation results based on 5000 Monte Carlo replications are reported in

Tables 2 and 3. Several interesting results emerge from the tables. First, the

smaller the value of T the greater the sample bias of λ̂T , and φ̂T . Second,

as T increases the bias and standard error of λ̂T , and φ̂T , decreases. It may

be surprising to see that the bias of φ̂T can be negative. This is because λ
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Table 2. Simulation results for the proposed two-step estima-
tion method. Summary statistics for λ̂T and φ̂T based on data
generated by the nonnegative process RV λ

t = φRV λ
t−1 + Zt +

0.05Zt−1 with iid standard exponential noise. True values for
λ and φ are -0.45 and 0.58. Mean and SD denotes the sample
mean and standard deviation, respectively. Results based on
5000 Monte Carlo replications.

T = 200 T = 400 T = 800

Mean SD Mean SD Mean SD

λ̂T -0.5811 0.1717 -0.5069 0.1253 -0.4622 0.0963

φ̂T 0.5175 0.0992 0.5560 0.0803 0.5811 0.0667

Table 3. Simulation results for the proposed two-step estima-
tion method. Summary statistics for λ̂T and φ̂T based on data
generated by the nonnegative process RV λ

t = φRV λ
t−1 + Zt +

0.15Zt−1 with iid standard exponential noise. True values for
λ and φ are -0.28 and 0.64. Mean and SD denotes the sample
mean and standard deviation, respectively. Results based on
5000 Monte Carlo replications.

T = 200 T = 400 T = 800

Mean SD Mean SD Mean SD

λ̂T -0.3660 0.1099 -0.3113 0.0793 -0.2776 0.0604

φ̂T 0.5824 0.0925 0.6242 0.0742 0.6524 0.0610

is estimated by λ̂T . Figure 3 plots histograms of λ̂T and φ̂T obtained from

5000 Monte Carlo replications with common sample size T = 800. In sum, it

seems that the proposed estimation method works well, especially when T is

reasonably large.
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Figure 3. Histograms of λ̂T and φ̂T based on data generated by
the nonnegative process RV λ

t = φRV λ
t−1 +Zt +0.15Zt−1 with iid

standard exponential noise. Results based on 5000 Monte Carlo
replications with common sample size T = 800. True values for
λ and φ are -0.28 and 0.64, respectively.

4. Competing Models

Numerous models and methods have been applied to forecast stock market

volatility. For example, ARCH-type models are popular in academic publica-

tions and RiskMetrics is widely used in practice. Both methods use returns to

forecast volatility at the same frequency. However, since the squared return is

a noisy estimator of volatility ABDL (2003) instead consider RV and present

strong evidence to support time series models based directly on RV in terms

of forecast accuracy. Motivated by their empirical findings, we compare the

forecast accuracy of the proposed model against three time series methods, all

based on RV: (1) the linear Gaussian AR model (LinGau); (2) the log-linear

Gaussian AR model (LogGau) and (3) the logarithmic autoregressive frac-

tionally integrated moving average (ARFIMA) model. We also compare the
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performance of our model against the exponential smoothing method, a RV

version of RiskMetrics. The LinGau and LogGau models are defined by equa-

tions (2.10) and (2.11), respectively. We now review the exponential smoothing

method and the ARFIMA model.

Exponential Smoothing-ES. Exponential smoothing is a simple method of

forecasting, where the one-step-ahead forecast of RV is given by

(4.1) R̂V T+1 = (1− α)RVT + αR̂V T = (1− α)
T−1∑
i=0

αiRVT−i,

with 0 < α < 1.

The exponential smoothing formula can be understood as the RV version

of RiskMetrics, where the squared return, X2
T , is replaced by RVT . Under

the assumption of conditional normality of the return distribution, X2
T is an

unbiased estimator of σ2
t . RiskMetrics recommends α = 0.94 for daily data

and α = 0.97 for monthly data.

To see why the squared return is a noisy estimator of volatility even under

the assumption of conditional normality of the return distribution, suppose

that Xt follows Equation (2.3). Conditional on σt, it is easy to show that

Lopez (2001)

(4.2) P

(
X2

t ∈
[
1

2
σ2

t ,
3

2
σ2

t

])
= 0.2588.

This implies that with a probability close to 0.74 the squared return is at least

50% greater, or at most 50% smaller, than the true volatility. Not surprisingly,

Andersen & Bollerslev (1998) find that RiskMetrics is dominated by models

based directly on RV. For this reason, we do not use RiskMetrics directly.

Instead, we use (4.1) with α = 0.97, which assigns a weight of 3% to the most
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recently observed RV. We remark that the forecasting results of Section 6 were

qualitatively left unchanged when other values for α were used.

ARFIMA(p, d, q). Long range dependence is a well documented stylized fact

for volatility of many financial time series. Fractional integration has pre-

viously been used to model the long range dependence in volatility and log-

volatility. The autoregressive fractionally integrated moving average (ARFIMA)

was considered as a model for logarithmic RV in ABDL (2003) and Deo,

Hurvich & Lu (2006), among others. In this paper, we consider two par-

simonious ARFIMA models for log-RV, namely, an ARFIMA(0,d,0) and an

ARFIMA(1,d,0).

The ARFIMA(p, d, 0) model for the log-RV is defined by

(1− β1B − ...− βpB
p)(1−B)d(ln RVt − µ) = εt,

where the parameters µ, β1, ..., βp and the memory parameter d are real valued,

and {εt} is a sequence of independent N(0, σ2
ε) distributed random variables.

Following a suggestion of a referee, we estimate all the parameters of the

ARFIMA model using an approximate ML method by minimizing the sum of

squared one-step-ahead prediction errors. See Beran (1995), Chung & Baillie

(1993) and Doornik & Ooms (2004) for detailed discussions about the method

and Monte Carlo evidence supporting the method. Compared to the exact ML

of Sowell (1992), there are two advantages in the approximate ML method.

First, it does not require d to be less than 0.5. Second, it has smaller finite

sample bias. Compared to the semi-parametric methods, it is also more effi-

cient.6 The one-step-ahead forecast of an ARFIMA(p, d, 0) with p = 0 at time

6We also applied the exact ML method of Sowell (1992) and the exact local Whittle
estimator of Shimotsu & Phillips (2005) in our empirical study and found that the forecasts
remained essentially unchanged.
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period T is given by

R̂V T+1 = exp
{

µ̂−
T−1∑
j=0

π̂j(ln RVT−j − µ̂) +
σ̂2

ε

2

}
,

and for p = 1 by

R̂V T+1 = exp
{

µ̂ + β̂(ln RVT − µ̂)

+
T−1∑
j=1

π̂j

[
β̂(ln RVT−j − µ̂)− (ln RVT−j+1 − µ̂)

]
+

σ̂2
ε

2

}
,

where

π̂j =
Γ(j − d̂ )

Γ(j + 1)Γ(−d̂ )
,

and Γ(·) denotes the gamma function.

5. Forecast Accuracy Measures

It is not obvious which accuracy measure is more appropriate for the eval-

uation of the out-of-sample performance of alternative time series methods.

Rather than making a single choice, we use four measures to evaluate forecast

accuracy, namely, the mean absolute error (MAE), the mean absolute per-

centage error (MAPE), the mean square error (MSE), and the mean square

percentage error (MSPE). Let R̂V it denote the forecast of RVt from model i at

time period t and define the accompanying forecast error by eit = RVt− R̂V it.

The four accuracy measures are defined, respectively, by

MSE =
1

P

P∑
t=1

e2
it, MSPE =

100

P

P∑
t=1

( eit

RVt

)2

,

MAE =
1

P

P∑
t=1

|eit|, MAPE =
100

P

P∑
t=1

∣∣∣ eit

RVt

∣∣∣.
where P is the length of the forecast evaluation period.
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An advantage of using MAE instead of MSE is that it has the same scale

as the data. The MAPE and the MSPE are scale independent measures. For

a comprehensive survey on these and other forecast accuracy measures see

Hyndman & Koehler (2006).

When calculating the forecast error, it is implicitly assumed that RVt is the

true volatility at time t. However, in reality the volatility proxy RVt is different

from the true latent volatility. Several recent papers discuss the implications

of using noisy volatility proxies when comparing volatility forecasts under cer-

tain loss functions. See, for example, Andersen & Bollerslev (1998), Hansen

(2006) and Patton (2007). The impact is found to be particularly large when

the squared return is used as a proxy for the true volatility, but diminishes

with the approximation error. In this paper, the true (monthly) volatility is

approximated by the RV using 22 (daily) squared returns. As a result, the

approximation error is expected to be much smaller than in the case of using

a single squared return.

6. Empirical Study

Forecasting S&P 500 Monthly Realized Volatility. The data used in

this paper consist of daily closing prices for the S&P 500 index over the period

January 2, 1946-December 31, 2004, covering 708 months and 15,054 trading

days. We measure the monthly volatility using realized volatility calculated

from daily data. Denote the log-closing price on the k’th trading day in month

t by p(t, k). Assuming there are Tt trading days in month t, we define the

monthly RV as

RVt =

√√√√ 1

Tt

Tt∑
k=2

[
p(t, k)− p(t, k − 1)

]2
, t = 1, ..., 708
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Figure 4. S&P 500 monthly realized volatilities, Jan 1946-Dec
2004. The vertical dashed line indicates the end of the initial
sample period used for estimation in our first out-of-sample fore-
casting exercise.

where 1/Tt serves the purpose of standardization.

In order to compare the out-of-sample predictive accuracy of the competing

methods, we split the time series of monthly RV into two subsamples. The

first time period is used for the initial estimation. The second period is the

hold-back sample used for forecast evaluation. When calculating the forecasts

we use a recursive scheme, where the size of the sample used for estimation suc-

cessively increases as new forecasts are made. The time series plot of monthly

RV for the entire sample is shown in Figure 4, where the vertical dashed line

indicates the end of the initial sample period used for estimation in our first

forecasting exercise.
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Table 4. Summary statistics for the S&P 500 RV data. JB
is the p-value of the Jarque-Bera test under the null hypothesis
that the data are from a normal distribution.

Mean Max Skew Kurt JB ρ̂1 ρ̂2 ρ̂3

RV 0.0037 0.0256 3.307 28.791 0.000 0.576 0.477 0.408

log-RV -5.6873 -3.6661 0.389 3.657 0.000 0.683 0.595 0.511

Table 4 shows the mean, maximum, skewness, kurtosis, the p-value of the

JB test statistic for normality, and the first three sample autocorrelations of

the entire sample for RV and log-RV. For RV, the sample maximum is 0.0256

which occurred in October 1987. The sample kurtosis is 28.791 indicating that

the distribution of RV is non-Gaussian. In contrast, log-RV has a much smaller

kurtosis (3.657) and is less skewed (0.389). It is for this reason that we include

Gaussian time series models for log-RV in the competition. However, a formal

test for normality via the JB statistic strongly rejects the null hypothesis

of normality of log-RV, suggesting that further improvements over log-linear

Gaussian approaches are possible.

Higher order sample autocorrelations are in general slowly decreasing and

not statistically negligible, indicating that RV and log-RV are predictable. To

test for possible unit roots, augmented Dickey-Fuller (ADF) test statistics were

calculated. The ADF statistic for the sample from 1946 to 2004 is -5.69 for

RV and -5.43 for log-RV, which is smaller than -2.57, the critical value at the

10% significance level. Hence, we reject the null hypothesis that RV or log-RV

has a unit root.

Forecasting Results. Each competing model was fitted to the in-sample

RV data and used to obtain one-period-ahead out-of-sample forecasts. Since
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a forecast frequency of one month is sufficiently important in practical ap-

plications, we focus on one-period-ahead forecasts in this paper. However,

multi-period-ahead forecasts can be obtained in a similar manner.

We perform two out-of-sample forecasting exercises. In both exercises, we

use the recursive scheme, where the size of the sample used to estimate the

competing models grows as we make forecasts for successive observations.

More precisely, in the first exercise, we first estimate all the competing mod-

els with data from the period January 1946-June 1975 and use the estimated

models to forecast the RV of July 1975. We then estimate all models with data

from January 1946-July 1975 and use the model estimates to forecast the RV

of August 1975. This process is repeated until, finally, we estimate the models

with data from January 1946-November 2004. The final model estimates are

used to forecast the RV of December 2004, the last observation in the sample.

Sample including the 1987 Crash. In the first exercise, the first month for

which an out-of-sample volatility forecast is obtained is July 1975. In total

354 monthly volatilities are forecasted, including the volatility of October 1987

when the stock market crashed and the RV is 0.0256.

In Figure 5, we plot the monthly RV and the corresponding one-month-

ahead NonNeg forecasts for the out-of-sample period, July 1975 to December

2004. It seems that the NonNeg model captures the overall movements in RV

reasonably well. The numerical computation of the 354 forecasts is fast and

takes less than ten minutes on a standard desktop computer.

In Figure 6, we plot the recursive estimates, φ̂T and λ̂T . While λ̂T takes val-

ues from -0.45 to -0.28, φ̂T ranges between 0.58 and 0.64. It may be surprising

to see that the path of φ̂T is nonmonotonic. This is because the estimates of
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Figure 5. Realized volatility and out-of-sample NonNeg fore-
casts for the period Jul 1975-Dec 2004. Dashed line: S&P 500
monthly realized volatility. Solid line: one-step-ahead NonNeg
forecasts.

the transformation parameter, λ, are varying over time. Our empirical esti-

mates of λ seem to corroborate well with the optimal value of λ obtained by

Goncalves & Meddahi (2006) using simulations in the context of a GARCH

diffusion and a two factor SV model. While φ̂T is quite stable, λ̂T jumps in

October 1987.

In Figure 7, we plot the NonNeg residuals, V̂t, for the entire sample. Also

depicted is a histogram of the residuals. From the histogram, it can be seen

that there is no evidence of outliers in V̂t and that there is an acute “peak”

about the mean. These two features suggest that the error term in the NonNeg

model tends to take a value around the mean and may explain why the NonNeg

model can under-predict (cf. Figure 5).
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Figure 6. NonNeg recursive parameter estimates for the first
out-of-sample forecasting experiment. Solid line: path of λ̂T .
Dashed line: path of φ̂T .
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Figure 7. Time series plot and histogram of the residuals V̂t,
obtained when estimating the NonNeg model using the entire
sample.
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Table 5 reports the forecasting performance of the competing models under

the four forecast accuracy measures of Section 5. Several results emerge from

the table. First, the relative performances of the competing models are sen-

sitive to the measures. Under the MSE measure, the two ARFIMA models

ranks as the best, followed by the NonNeg model and the log-Gaussian model.

ABDL (2003) found that their ARFIMA models perform well in terms of R2

in the Mincer-Zarnomitz regression. Since the MSE is closely related to the

R2 in the Mincer-Zarnomitz regression, our results reinforce their findings.

However, the rankings obtained under MSE are very different from those ob-

tained under the other three accuracy measures. The MAE and the MSPE

ranks the NonNeg model the first while the MAPE and the MSPE ranks the

log-Gaussian model the first. Second, the performances of the two ARFIMA

models are very similar under all measures. To understand why, we plotted

the sample autocorrelation functions of the ARFIMA(0,d,0) residuals for the

entire sample and found that fractional differencing alone successfully removes

the serial dependence in log-RV. Third, the improvement of ARFIMA(0,d,0)

over NonNeg is 7.40% in terms of MSE. On the other hand, the improvement

of NonNeg over ARFIMA(0,d,0) is 0.83%, 6.30% and 6.35% in terms of MAE,

MAPE, and MSPE, respectively. These improvements are striking as we ex-

pect ARFIMA models to be hard to beat. Fourth, ES performs the worst in

all cases.

Sample Post the 1987 Crash. To examine the sensitivity of our results with

respect to the 1987 crash and the 1997 crash due to the Asian financial crisis,

we redo the forecasting exercise so that the first month for which an out-of-

sample volatility forecast is obtained is January 1988 and the last month is

September 1997.
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Table 5. Forecasting performance of the competing methods
under four different accuracy measures. Results based on 354
one-step-ahead forecasts for the period Jul 1975-Dec 2004.

MAE ×103 MAPE MSE×106 MSPE

value rank value rank value rank value rank

ES 1.2681 6 31.04 6 3.8622 6 15.30 6

LinGau 0.9746 5 20.93 3 3.3117 5 7.80 3

LogGau 0.9544 2 20.74 1 3.0759 4 7.56 1

ARFIMA(0,d,0) 0.9615 3 22.09 4 2.8474 1 8.04 4

ARFIMA(1,d,0) 0.9615 3 22.08 5 2.8510 2 8.04 4

NonNeg 0.9536 1 20.78 2 3.0748 3 7.56 1

In Figure 8, we plot the monthly RV and the corresponding one-month-

ahead NonNeg forecasts for the out-of-sample period, January 1988-September

1997. As before, forecasts from the NonNeg model captures the overall move-

ments in RV reasonably well. Table 6 reports the forecasting performance

of the competing models under the four forecast accuracy measures. Since

the RVs are smaller in this subsample, as expected, the MAE and the MSE

are smaller than before. However, the relative performances of the compet-

ing models obtained from the subsample are very similar to those obtained

from the entire sample. For example, as before the NonNeg model performs

the best according to the MAE. Moreover, the two ARFIMA models perform

better than the other competing models in terms of MSE.

7. Concluding Remarks & Future Research

In this paper, a simple time series model is introduced to model and forecast

RV. The new model combines a nonnegative valued process for the error term

with the flexibility of a Box-Cox like power transformation. The transforma-

tion is used to induce homoskedasticity while the nonnegative support of the
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Figure 8. Realized volatility and out-of-sample NonNeg fore-
casts for the period Jan 1988-Sep 1997. Dashed line: S&P 500
monthly realized volatility. Solid line: one-month-ahead Non-
Neg forecasts.

Table 6. Forecasting performance of the competing methods
under four different accuracy measures. Results based on 117
one-step-ahead forecasts for the period Jan 1988-Sep 1997.

MAE ×103 MAPE MSE×106 MSPE

value rank value rank value rank value rank

ES 1.0770 6 35.38 6 1.7070 6 20.18 6

LinGau 0.7828 5 23.88 5 1.2579 5 10.73 5

LogGau 0.7792 4 23.38 1 1.2724 4 10.53 3

ARFIMA(0,d,0) 0.7789 3 23.65 4 1.1603 1 10.24 2

ARFIMA(1,d,0) 0.7782 2 23.61 3 1.1621 2 10.22 1

NonNeg 0.7769 1 23.45 2 1.2599 3 10.58 4
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error distribution overcomes the truncation problem in the classical Box-Cox

setup. The model is semiparametric as only the support and not the functional

form of the error distribution is assumed to be known. Also, the dependency

structure of the error process is left unspecified which allows for departures

from the dynamics of a conditional AR(1) model. Consequently, the proposed

model is highly parsimonious, containing only two parameters that have to

be estimated for the purpose of forecasting. A two-stage estimation method

is proposed to estimate the parameters of the new model. Simulation studies

validate the new estimation method and suggest that it works reasonably well

in finite samples.

We empirically examine the forecast performance of the proposed model rel-

ative to a number of existing methods, using monthly S&P 500 RV data. The

out-of-sample performances were evaluated under four different forecast accu-

racy measures (MAE, MAPE, MSE and MSPE). We found strong empirical

evidence that our nonnegative model produce highly competitive forecasts.

Why does the simple nonnegative model produce such competitive fore-

casts? Firstly, as shown in Section 2.2, the logarithmic transformation may

not induce homoskedasticity and normality as well as anticipated. A more

general transformation may be needed. Secondly, the nonnegative model is

highly parsimonious. Thirdly, we allow for the dependence in the error term

to be of an unknown form. This new approach is in sharp contrast to the tra-

ditional approach which aims to find a model that removes all the dynamics

in the original data. When the dynamics are complex, a model with a rich

parametrization is called for. This approach may come with the cost of over-

fitting and hence may not necessarily lead to superior forecasts. By combining
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a parametric component for the persistence and a nonparametric error compo-

nent with unknown dependency structure, our approach presents an effective

utilization of more recent and less recent information.

Although we only examine the performance of the proposed model for pre-

dicting S&P 500 realized volatility one month ahead, the technique itself is

quite general and can be applied in many other contexts. First, the method

requires no modification when applied to intra-day data to forecast daily RV.

In this context, it would be interesting to compare our method with the pre-

ferred method in ABDL (2003). Second, our model can easily be extended

into a multivariate context by constructing a nonnegative vector autoregres-

sive model. Third, while we focus on stock market volatility in this paper,

other financial assets and financial volatility from other financial markets can

be treated in the same fashion. Fourth, as two alterative nonnegative models,

it would be interesting to compare the performance of our model with that of

Cipollino et al. (2006). Finally, it would be interesting to examine the useful-

ness of the proposed model for multi-step-ahead forecasting. These extensions

will be considered in later work.
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