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1.   Introduction 

The fact that financial variables are available at high frequencies, and quickly, raises two 

related questions pertinent to their use in forecasting macroeconomic variables, which are only 

available at much lower frequencies, and are much less timely. First, is it gainful to use the financial 

variables at the higher frequencies, instead of aggregating down to the frequency of the 

macroeconomic variables? Second, can high-frequency financial data be used to update 

macroeconomic forecasts as and when the financial data become available? We explore these 

questions for the particular case where daily stock market returns are used to forecast, and update 

forecasts of, quarterly real output growth.  

The extant out-of-sample evidence on stock returns as a predictor of output growth is actually 

rather weak, despite the traditional view of stock returns as a leading indicator of economic activity 

(see Stock and Watson 2003, for  a comprehensive survey of the use of asset prices as predictors for 

output and inflation). A quick out-of-sample forecasting exercise provides an example: starting with 

the sample period 1964Q1 to 1989Q4, we recursively estimate two models, a quarterly AR(1) for real 

output growth, and a quarterly AR(1) for real output growth with lagged quarterly returns on the S&P 

500 index as an additional predictor. We use these models to generate one-step-ahead forecasts of 

real output from 1990Q1 to 2005Q4. In most of the estimation sample periods, lagged return is 

statistically significant at the 10%, if not the 5% level of significance. Yet lagged returns do not 

improve out-of-sample forecasts of real output, and in fact produces slightly worse forecasts: the ratio 

of the out-of-sample mean square forecast error (MSFE) from the AR(1) + stock return model to the 

MSFE of the AR(1) model is 1.011. Repeating the exercise with current returns replacing lagged 

returns produces similar results: the out-of-sample MSFE for the augmented AR(1) model is larger 

than the MSFE for the unaugmented AR(1) model. In this example, we used the standard practice of 

aggregating the higher frequency variable down to the frequency of the lower frequency variable. In 
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this paper, we ask if alternative approaches might improve the out-of-sample predictive performance 

of simple forecasting models of real output growth that use stock returns as a predictor. 

The question of how to use high frequency data for forecasting macroeconomic variables is 

essentially a question of how to weight the high frequency observations to form an aggregate 

predictor. That is, the question is how best to filter the data. By using quarterly stock returns, the 

forecaster is essentially filtering the data by adding up consecutive lots of 66 daily returns. This 

smooths out daily fluctuations in stock returns and emphasizes the lower frequency features of the 

data. Some smoothing is obviously desirable: any single, individual, daily observation of stock return 

is unlikely to contain much information that is useful for forecasting quarterly real output growth. But 

what is the optimal way to filter the data? There is no compelling reason to believe that an equal-

weighted average of 66 daily returns is the best way to aggregate the data. Perhaps there is too much 

smoothing, perhaps there is too little. Should more weight be placed on more recent observations? It 

may be that the quarterly frequency for stock returns is optimal for predicting quarterly output, but 

there is no reason why it must be so. Finding the optimal frequency is ultimately an empirical 

question, which is the focus of our investigation. We investigate two models for using daily stock 

returns to forecast, and update forecasts of, quarterly real output growth. Both models use daily 

returns aggregated in some manner to form a single stock market predictor. We consider (i) 

augmenting the quarterly AR(1) model for real output growth with daily returns using a 

nonparametric Mixed Data Sampling (MIDAS) setting, and (ii) augmenting the quarterly AR(1) 

model with the most recent r -day return as an additional predictor. 

Many recent studies have focused on the issue of mixing data of different frequencies. For 

instance, Mariano and Murasawa (2003) construct a monthly coincident indicator of the business 

cycle using quarterly GDP and monthly coincident business cycle indicators. In the forecasting 

context, Ghysels, Santa-Clara, and Valkanov (2006a) investigate if equity returns at very high 
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frequency (data observed at 5 minute intervals) are useful for forecasting future realized volatility of 

daily equity return, defined as increments in quadratic variation. They find that models that make 

direct use of 5 minute data do not produce better volatility forecasts than models that use daily 

information as predictors. Clements and Galvão (2006) consider monthly predictors of quarterly 

output growth and inflation. Both papers use the MIDAS approach introduced in Ghysels, Santa-

Clara, and Valkanov (2004) and Ghysels, Sinko, and Valkanov (2006b) in their investigations. Stock 

returns are among the many predictors studied in Clements and Galvão (2006), but there are 

important differences between that work, and the work presented here. First, we use a nonparametric 

framework based on functional regression modelling (Ramsay and Silverman, 2005). Furthermore, 

our treatment of lagged quarterly output is different. Second, Clements and Galvão (2006) consider 

the optimal combination of monthly stock returns whereas we consider the optimal combination of 

daily returns. Third, in addition to the MIDAS setting, we also consider simple regression forecasting 

models that include stock returns at various frequencies. Finally, and most importantly, our 

conclusions and recommendations regarding the use of stock returns as a predictor for quarterly real 

output growth are substantially different from theirs. 

In the next section, we describe the data, the setup of our study, the models we use, how they 

are estimated, and how the forecasts are evaluated. Results are presented and discussed in Section 3. 

Section 4 concludes.  

  

2.   Data, Study Setup, Models 

Throughout this paper, quarterly real output growth refers to quarterly percentage change in 

seasonally adjusted annualized chained-weighted GDP. Stock returns are returns on the S&P500 

stock index. We use data from the start of 1964 to the end of 2005, which gives 168 quarterly 

observations of real output growth, and 10,958 daily observations of stock market returns (we use 
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five-day weeks, with zero returns for days when the market is closed). Data from 1962Q1 to 1963Q4 

are available in our sample, but are reserved for accomodating lags in our forecasting models. 

2.1 Study Setup 

We evaluate two classes of models for forecasting US quarterly real output growth. Both will 

be described in detail shortly, but for now we simply note that both use lagged quarterly output 

growth and daily stock returns as predictors; the difference between the two models is in how the mix 

of frequencies is handled. The performances of these two models in forecasting real output growth at 

various horizons are compared against a benchmark model that uses only the latest available lagged 

output growth. We consider forecasting at horizons of h = 0, 20, 40, 70, 90, 110, and 130 days, 

corresponding approximately to monthly horizons of zero to six months. The choice of forecast 

horizons covers both our desire to determine how best to combine daily return data into a quarterly 

forecasting model, and our desire to see if daily return data within a quarter can be helpful in 

updating our forecasts of real output growth for that quarter. The zero-month-ahead forecast, 

sometimes called a ‘nowcast’, is a forecast of real GDP growth in a particular quarter, made at the 

end of that quarter. This is, of course, not a trivial exercise because GDP data for any one quarter is 

available only about a month after the end of the quarter.  

Describing models that combine quarterly and daily data requires notation that is a little more 

intricate than usual; we explain here the system we use in the paper. We use τ  as a time index, with 

1 to 10,985τ =  denoting the ends of days 1 through 10,985. We use kt , 1 to 168k = , to indicate the 

end-of-quarters: 1t  is the day-index of the last day of 1964Q1, 2t  is the day-index of the last day of 

1964Q2, and so on. We have 1 65t = , 2 130t = , 3 196t = , …, 176 10,985t = . Each quarter contains 64 

to 66 days, not counting weekends. We use ( )x τ  to denote the one-day return over day τ , and 

( , )x rτ  to denote the r -day return measured at time τ . Thus, ( ,1) ( )x xτ τ≡ , and the total return on 

the index over day τ  and the previous 1r −  days is  
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1
0

( , ) ( ,1)r
i

x r x iτ τ−

=
= −∑      (1) 

Observed values of output growth are denoted by ( )ky t , 1,2,...,168k = . 

2.2 Models 

The first model we consider is a non-parametric implementation of the MIDAS model 

introduced in Ghysels et al. (2004, 2006b). In this implementation, we treat τ  as running 

continuously from 0 to 10,985, and ( )x τ  as noisy observations of a continuous-time process. This is 

incorporated into a h -day ahead forecasting model for quarterly real output growth as 

*
0 1 ,0

( ) ( ) ( ) ( )
L

k k h ky t y s x s ds tβ β β ε= + + +∫    (2) 

where , ( ) ( )k h kx s x t h s≡ − − , and *y  is an appropriate lag of quarterly real output growth. We take 

270L = , i.e., we include just over a year of daily returns data in each of our forecasting models. 

Because of the timing of the release of quarterly real output growth, the latest available lagged 

quarterly real output growth *y  is 1( )ky t −  for horizons h = 0, 20, and  40, 2( )ky t −  for horizons 

h = 70, 90, and 110, and 3( )ky t −  for horizon h = 130.  

 Before proceeding, we note that no attempt is being made in model (2) to capture the 

structural aspects of the stock market - real output relationship. It is merely a projection of real output 

growth on available lagged output growth and stock returns data, for the purpose of forecasting. It is 

a forecasting model, and will be evaluated as such.  

 Model (2) is an example of a functional regression model. Although there have been few 

applications of such models in economics (e.g. Ramsay and Ramsey, 2002), such models have 

proven useful in other fields. Methods for estimating such models, and examples of their application, 

are discussed in detail in Ramsay and Silverman (2002, 2005). Software is available for estimating 

general functional regressions; we use Prof. James Ramsay’s MATLAB implementation, downloaded 

from http://ego.psych.mcgill.ca/misc/fda/. The idea behind the estimation method is to represent 

( )sβ  and 1, ( )k hx s+  in terms of basis functions 
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1
( ) ( )m

i ii
s b sβ θ

=
=∑    and , , , , ,( ) ( )n

k h k h j k h jj
x s c sψ=∑  

where ( )i sθ , 1,...,i m= , and , , ( )k h j sψ , 1,...,j n= , are the basis functions used to represent ( )sβ  and 

, ( )k hx s  respectively, and where ib  and , ,k h jc  are the corresponding weights on these basis functions. 

We use B-spline bases of order 4 for both ( )sβ  and , ( )k hx s , with knots placed at every five lags, that 

is, at lags s  = 0, 5, 10, …, 270. Model (2) is estimated by minimizing the residual sum of squares 

subject to a roughness penalty. Suppose we are estimating (2) over a sample of T  observations. In 

matrix notation, we can write ( ) ( )s s=x Cψ  and ( ) ( )s sβ ′= θ b , where ( )sθ  and b  are the 1n×  

vectors of the basis functions ( )i sθ  and their weights ib  respectively, ( )sψ  is the vector of basis 

functions ( )j sψ , and C  is the T m×  matrix of the coefficients , ,k h jc  on these basis functions. Then  
 

*
0 1 0

*
0 1 0

*
0 1

( ) ( )

( ) ( )

L

L

s s ds

s s ds

ψθ

β β β

β β

β β

= + + +

′= + + +

= + + +

=

∫

∫

y y x ε

y Cψ θ b ε

y CJ b ε

Zζ

 

where y  and *y  are 1T ×  vectors of observations of quarterly real output ( )ky t  and its appropriate 

lag respectively, 
0

( ) ( )
L

s s dsψθ ′= ∫J ψ θ , *[ ]ψθ=Z 1 y CJ , and ζ  is the vector 0 1[ ]β β ′b . To 

ensure sufficient smoothnest in ( )sβ , the coefficient vector ζ  is estimated by minimizing the 

penalized sum of squares  

0( ) ( ) ( ) ( )y y y yλ λ′ ′ ′ ′− − + = − − +Zζ Zζ b Rb Zζ Zζ ζ R ζ  

where 2 2
0

[ ( )][ ( ) ]
T

D s D x dsθ θ ′= ∫R , and where 0R  is the matrix R  augmented with two leading 

rows and columns of zeros. Then the minimizing value of ζ  is  

1
0

ˆ ( )λ −′ ′= +ζ Z Z R Z y  

with variance 2 1 1
0 0

ˆvar[ ] ( ) ( )εσ λ λ− −′ ′ ′= + +ζ Z Z R Z Z Z Z R , where 2
εσ  can be estimated from the 

residuals. The smoothing parameter λ  is chosen by cross-validation over the estimation period, 

where we search over 210λ =  to 710λ = . We choose a new smoothing parameter by cross-validation 
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each time the estimation period is rolled forward. We refer to forecasts from (2) as “functional 

regression forecasts”. 

 The second model we consider is a linear regression forecasting model of the form  

*
0 1 2( ) ( , ) ( )k k ky t y x t h r tβ β β ν= + + − + ,    (3) 

that is, where we use lagged r -day returns on the stock market together with an appropriate lag of 

real output growth. This model is a restricted version of the functional forecasting model (2), forcing 

( )sβ  to be zero over some days, and constant over other days. This is a natural alternative to (2) for 

several reasons. First, taking r -day returns is a very natural, easily interpretable way of combining r  

one-day returns. Second, model (3) is easy to apply, and directly addresses the question of whether 

there is an optimal frequency of stock returns for forecasting quarterly real output growth. We 

consider the performance of model (3) for r = 1, 5, 10, 15, … 270, over each of the horizons h = 0, 

20, 40, 70, 90, 110, 130. That is, at each horizon, we evaluate 55 versions of (3), corresponding to 55 

values of r , the level of aggregation of stock returns. 

2.3 Forecast Evaluation 

We evaluate both models on their out-of-sample forecast performance, with all parameters 

estimated using a rolling scheme. In the first instance, the models are estimated over the estimation 

period 1964Q1 – 1989Q4 (104 quarters). Then forecasts from our two models and the benchmark 

model are computed for 1990Q1. The estimation period is then rolled forward by one quarter, to 

1964Q2 – 1990Q1, and forecasts computed for quarterly real output in 1990Q2. This is repeated until 

forecasts for 2005Q4 are made, giving 64 forecasts from each model.  

The quarterly real output growth data is plotted in Figure 1, with the initial estimation sample 

period and the forecast sample period marked out. We will evaluate our forecasts over the full 

forecast sample period, as well as over each of three forecast subperiods: 1990Q1 to 1994Q4 (20 

quarters), 1995Q1 to 2000Q4 (24 quarters), and 2001Q1 to 2005Q4 (20 quarters). The purpose for 
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evaluating the forecasts over three subperiods is because each of the three subperiods contain 

different features of real output growth. The first subperiod starts just before the NBER-dated 

contraction of 1990Q3 – 1991Q1, and the subsequent recovery. Real output growth is fairly stable 

over the second subperiod, with minor fluctuations around a rate of about 4 percent. Real output 

growth in the third subperiod falls in early 2001, increases sharply in 2003 to 7.5 percent, and then 

falls back to levels averaging approximately three percent. We take the view, in evaluating forecasts, 

that a good forecast ought to capture the important features of the target variable. Thus, we are more 

interested in the forecast performance over the first and third subperiods. In the second period, the 

target variable fluctuates steadily over a significant length of time. Any two reasonable forecasting 

models should predict the same, and so there would be little to choose between them over this 

subperiod. Furthermore, and importantly, a bad forecasting model that always predicts minor 

fluctuations over a constant rate will also appear to be a reasonable forecasting model. A comparison 

between the good and the bad forecasting models will reveal little over such a subperiod.  

We will evaluate, at each forecast horizon h , the 56 models (the functional forecasting 

model (2), plus the 55 linear regression models (3)) by comparing their MSFEs and Mean Absolute 

Forecast Error (MAFEs) against the MSFE and MAFE for the forecasts from the appropriate 

benchmark model 

*
0 1( ) ( )k ky t y tβ β η= + +       (4) 

where, as before, *y  is 1( )ky t − , 2( )ky t − , or 3( )ky t − , depending on the horizon h . Statistical 

significance is evaluated using the test for Superior Predictive Accuracy (SPA) developed in Hansen 

(2005), for comparing multiple alternative forecasts against a benchmark forecast. The SPA test is 

closely related to the ‘reality check’ test of White (2000), and like the latter is designed to account for 

the mining over alternative forecasting models. The SPA test, however, controls for poor alternatives, 
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and is therefore less sensitive to the inclusion of these alternatives, and has been demonstrated to be 

more powerful in simulations and in application (Hansen, 2005; Hansen and Lunde, 2005). 

 

4.   Results and Discussion 

The estimated coefficient functions for the functional forecasting model for h = 0, 70, and 130 are 

displayed in Figures 2(a), (b), and (c) respectively. Only the coefficient functions estimated over the 

initial estimation period are shown. The estimated coefficient function for the functional forecasting 

model with 0h =  shows that most of the weight is placed on returns in the previous two quarters 

( s =  70 to 200 approximately), and that these are statistically significant (Figure 2a). Little weight is 

placed on returns in the current quarter ( s = 0 to 70, approx.). Some weight is placed on returns in the 

fourth quarter ( 200s > ) but these are statistically insignificant. This estimated weight function does 

not change much as the estimation sample period rolls forward. The estimated weight function is 

fairly similar to what is obtained when quarterly real output growth is regressed onto lagged output 

growth, current quarterly stock return, and three lags of quarterly stock returns. Over the period 

1964Q1 – 1989Q4, this regression gives 

1 1 2 30.025 0.180 0.018 0.079 0.137 0.039
[4.953] [1.816] [0.388] [1.699] [2.893] [0.800]

t t t t t ty y x x x x− − − −= + + + + +
.  (5) 

where we use standard notation for regressions where all variables are measured in the same 

frequency, with tx  denoting quarterly stock returns. The numbers in the square brackets are t-

statistics. As in the functional regression model, the largest weights are for returns in the previous 

two quarters.  

 For 70h =  (3-month horizon), the estimated coefficient function on stock returns for the 

functional forecasting model places weights that decline with the lag (Figure 2b). The weights on the 

first three quarters of included returns are significant. For 130h =  (6-month horizon), statistically 
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significant weight is placed on the first quarter of included daily returns only (Figure 2c). Again, 

these estimated weight functions are broadly similar to those obtained from corresponding quarterly-

data regressions. The estimated weight functions suggest that it is stock returns within one year of the 

end of the target quarter that are relevant for forecasting real output growth.  

 In Figure 3, the performance of the functional forecasting models are visually compared with 

forecasts from the benchmark model (4). Three groups of plots are presented: Figure 3(a) compares 

the 0, 20, and 40 day horizon forecasts against forecasts from (4) when *
1( )ky y t −= ; Figure 3(b) 

compares the 70, 90, and 110 day horizon forecasts against forecasts from the benchmark model 

when *
2( )ky y t −= ; Figure 3(c) compares the 130 day horizon forecasts against forecasts from (4) 

when *
3( )ky y t −= . Different benchmark models are used for forecasts at different horizons to 

account for the fact that at longer horizons, the most recent lags of real output growth are not yet 

available. The top-left panels of Figure 3(a) and (b), and the left panel of Figure 3(c), all labeled 

‘benchmark’, show the forecasts from the benchmark model (dots) plotted over the solid line 

representing the realizations of quarterly real output growth. The other panels show the functional 

regression forecasts at the various horizons, against the realizations of real output growth. Clearly, 

the benchmark forecasts do not appear to pick out the important features of the data; the benchmark 

model for the six-month horizon model is particularly weak (Figure 3c). In all cases, the forecasts 

from the functional regression models do a better job (at least visually) at tracking the data in the first 

subperiod 1990Q1 – 1994Q4, and especially in the last forecast subperiod, 2001Q1 – 2005Q4.  

 The MSFE and MAFE comparisons of the functional regression forecasts with the 

benchmark forecasts are given in Table 1. The numbers in the first panel of the table are ratios of the 

functional regression models’ out-of-sample MSFE to the corresponding benchmark models’ out-of-

sample MSFE. A value less than one indicates that the functional regression model improves on the 

forecasts of the benckmark model. The second panel shows the corresponding ratios of MAFEs. The 
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numbers are in agreement with the visual comparisons. Some improvements in MSFEs and MAFEs 

are seen in the first forecast subperiod, but these are very small. There is generally no improvement 

in the second forecast subperiod, but as pointed out earlier, little can be drawn from this subperiod. 

More noteworthy is the fact that large improvements in out-of-sample MSFEs and MAFEs are 

obtained in the last forecast subperiod, with reductions in MSFE of over 20 percent to over 30 

percent. The fact that large improvements are observed in one subperiod and not in others is 

consistent with observations elsewhere that the usefulness of financial assets for predicting output 

growth varies over time (e.g., Stock and Watson, 2003).  

 The corresponding figures and statistics for the linear regression forecast models are given in 

Figures 4(a), (b), and (c), and in Table 2. At each horizon, we evaluate forecasts from 55 models 

(corresponding to 55 values of r ), but we only report the statistics for the best performing model. 

Visual comparisons in Figure 4 generally lead to the same conclusions as those obtained from 

studying Figure 3. There are, however, some quantitative differences. In Table 2, we see small 

improvement in forecast performance in the first subperiod, and no improvement in MSFEs and 

MAFEs in the second subperiod. There does not appear to be important differences between the 

ratios for these two subperiods and the corresponding ratios in Table 1. However, very large 

reductions in MSFEs and MAFEs are observed for the third forecast subperiod, much larger 

reductions than those observed in Table 1. In terms of MSFE, the reductions over baseline range from 

just under 37 percent to over 50 percent.  

The fact that the improvements in the third forecast subperiod are larger than those obtained 

from the functional forecasting model is particularly interesting because the restrictions imposed in 

the linear regression models (3) are generally false in-sample (see for instance equation (5)). This 

result is, nonetheless, consistent with results (in other contexts) that show that the imposition of 

substantial a priori structure can lead to improved forecasts. Stock and Watson (2004) find, in a study 
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covering seven developed countries, that an equally weighted combination of forecasts of real output 

growth based on individual predictors performs better than forecast combinations that heavily weight 

recent performance or allow for substantial time variation in the weights. Diebold and Li (2006) 

consider a forecasting model of the yield curve that imposes a restricted version of the Nelson-Siegel 

(1987) functional form on the yield curve at each period, with a simple AR(1) specification on the 

(three) parameters of this functional form. They find that long horizon forecasts from this model are 

more accurate than forecasts from the usual benchmark models. 

It is also interesting to note which models perform best at the various horizons. At the 0-

month horizon, the best model is one that uses one-year returns on the stock market. With each one 

month increase in the forecast horizon, up to the 4-month forecast horizon, the length of the return 

included in the best model falls by approximately one month. This supports the assertion made earlier 

that it is returns over the one-year period prior to the end of the target quarter that is relevant for 

forecasting output.  

 We now carry out a slightly different, more formal, comparison of the forecasts, using the 

SPA test of Hansen (2005). We carry out one test per forecast horizon. For each horizon, we ask if 

any of the 56 models (one functional forecasting model, and 55 linear regression forecasting models) 

produces forecasts that are significantly better than the baseline model appropriate to the horizon. At 

each horizon, let the forecasts from the 56 alternative models be m̂tY , where 1,...,56m = , and the 

evaluation period is 1,...,t n= , and let the baseline model forecasts be t̂Y . Then the hypothesis is 

≤μ 0  where  
 

1 1

2 2

56 56

( )
( )

( )

X t
X t

E

X t

μ
μ

μ

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟= =
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

μ   



 13 
 

and ,
ˆ ˆ( , ) ( , )m t t t t mtX L Y Y L Y Y= − . The function (.,.)L  is the loss criteria. We use mean square loss 

2ˆ ˆ( , ) ( )t mt t mtL Y Y Y Y= − ,  and absolute loss ˆ ˆ( , )t mt t mtL Y Y Y Y= − . The test statistic is 

 
1/ 2

max
ˆ

sm m
n m m

n XT
σ

= . 

Estimates of 2 1/ 2ˆ var( )m mn Xσ =  and consistent p-values for this test, as well as upper and lower 

bounds for the p-values, are obtained using a bootstrap implementation described in Hansen (2005). 

We use 1000 bootstrap replications throughout. The bootstrap implementation also requires the 

choice of a parameter q to account for dependency in the relative loss series. We report results for q = 

0.5 and q = 0.25 . 

  The results of this test are reported in Table 3. Results are reported for both MSFE and 

MAFE loss metrics, for q = 0.25 and q = 0.5 , for the three forecast subsamples. The number that 

appears under ‘Best’ refers to the number of days over which returns are aggregated in the best 

performing model. If ‘func’ appears in this column, this indicates that the best performing model is 

the functional forecasting model. For the third forecast subperiod, we observe that as the forecast 

horizon increases by a month, the number of days over which returns are aggregated in the best 

performing model falls by about a month, very similar to an earlier observation. The exception is the 

6-month horizon. We note, however, that the second best performing model in this case is the model 

with 125-day returns. Three “p-values” are reported for each loss function. The p-values reported 

under SPAc are the asymptotically consistent p-values for the test statistic. The numbers reported 

under SPAl and SPAu are the lower and upper bounds for the p-values. The results show that the 

benchmark model is outperformed in almost all cases in the third forecast subsample, at either the 5% 

or 10% level of significance. The exceptions are the 2-month-ahead forecasts with 0.5q = , and the 5-

months-ahead forecasts, where weak statistical significance is obtained only for 0.25q =  with MSFE 

as the loss criterion. The 2- and 5- month forecast horizons are the horizons at which a new 
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observation of lagged real output growth becomes available, which may explain the fall in statistical 

significance at these horizons. Nonetheless, the results in Table 2 suggest that the gains from 

including stock returns at an appropriately aggregated level into the forecasting model is substantial 

at all horizons. The results also highlight the value of using latest available observations (of low 

frequency) stock returns to update forecasts of real output. 

 

4.   Conclusion 

 Financial data are in general available at much higher frequencies than macroeconomic data. 

We asked how high frequency stock market data might best be used when the objective is to forecast 

real output growth. In particular, we asked how daily data should be combined in a model for 

forecasting quarterly real output growth. We explored two different methods, one where daily data 

enters into the quarterly forecasting model as a functional predictor, and another where daily stock 

return data is simply aggregated into multi-day returns and put into a linear regression forecasting 

model.  

 All the results suggest that stock returns are useful predictors for real output growth, 

particularly in recent years: (i) our forecasting models that include stock returns have succeeded in 

tracking the main features of real output growth; (ii) our short-horizon forecasting models show that 

stock returns are useful for updating forecasts of real output growth. Our forecasting models all 

suggest that it is returns over the year leading up to the end of the target quarter that contains 

information useful for forecasting output growth. Although estimating the weights in-sample leads to 

forecasts that are better than a benchmark forecast model using only lagged output growth, results 

from our linear regression forecasting models that assume equal weight over the daily returns 

perform even better, even though restriction of equal weights is generally rejected in-sample. 
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 The results suggest a simple way of using the latest available stock return data to forecast, or 

to update forecasts of, real output growth, and that is to use aggregated stock returns as a predictor, 

including data in the year leading up to the end of the target quarter: to predict real output growth 2 

months prior to the end of the target quarter, use aggregate returns over the latest 10 months; to 

predict real output growth 10 months prior to the end of the target quarter, use the latest available 2-

month returns, etc.. More generally, the results in the paper suggest that the practice of coercing all 

variables in a forecasting model to have the same frequency might not be an optimal precedure. 

Mixing frequencies can lead to better forecasts. 
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Table 1  Performance of Functional Forecasts vs Benchmark Forecasts 
 
 

        
Horizon 0 mth 1 mth 2 mth 3 mth 4 mth 5 mth 6 mth 

        
MSFE Ratio        
Full Sample 0.910 1.026 0.940 0.908 0.875 0.871 0.899 

1990Q1:1994Q4 0.906 0.839 0.930 0.857 0.898 0.908 1.099 
1995Q1:2000Q4 1.021 1.346 1.053 1.146 0.934 0.890 0.757 
2001Q1:2005Q4 0.728 0.744 0.763 0.676 0.768 0.791 0.783 

        
MAFE Ratio        
Full Sample 0.963 1.060 1.021 0.992 0.959 0.936 0.985 

1990Q1:1994Q4 0.933 0.926 0.958 0.945 0.985 0.922 1.070 
1995Q1:2000Q4 1.067 1.297 1.130 1.131 1.047 0.990 0.975 
2001Q1:2005Q4 0.842 0.868 0.937 0.864 0.807 0.879 0.887 

        
 

Note: Numbers in the upper panel are ratios of mean squared forecast error (MSFE) from the 
functional forecasting models (2) to the MSFE of the corresponding benchmark models (4). The 
numbers in the lower panel are the corresponding ratios of mean absolute forecast errors (MAFE) 

 
 
 



  

Table 2  Performance of Regression Forecasts vs Benchmark Forecasts 
 

        
Horizon 0 mth 1 mth 2 mth 3 mth 4 mth 5 mth 6 mth 

        
Best model based on 

full sample MSE ratio 
270 255 230 195 175 170 150 

        
MSE Ratio        
Full Sample 0.872 0.870 0.882 0.820 0.798 0.824 0.772 

1990Q1:1994Q4 1.078 1.041 0.979 0.903 0.912 0.884 0.877 
1995Q1:2000Q4 0.878 0.873 0.926 1.002 0.881 0.852 0.700 
2001Q1:2005Q4 0.572 0.624 0.670 0.466 0.528 0.704 0.709 

        
MAE Ratio        
Full Sample 0.958 0.966 0.982 0.917 0.897 0.925 0.917 

1990Q1:1994Q4 1.060 1.027 0.998 0.998 0.998 0.962 0.975 
1995Q1:2000Q4 0.988 0.984 1.026 0.996 0.948 0.955 0.899 
2001Q1:2005Q4 0.776 0.855 0.892 0.703 0.696 0.838 0.863 

        
 
Note: Numbers in the upper panel are ratios of mean squared forecast error (MSFE) from the 
regression forecasting models (3) to the MSFE of the corresponding benchmark models (4). The 
numbers in the lower panel are the corresponding ratios of mean absolute forecast errors (MAFE) 
 
 
 



  

Table 3    Tests for Superior Predictive Ability 

   0 Month Horizon  1 Month Horizon  2 Month Horizon  3 Month Horizon 

Metric q   Best SPAl  SPAc  SPAu   Best SPAl  SPAc  SPAu   Best SPAl  SPAc  SPAu   Best SPAl  SPAc  SPAu  

1990Q1:1994Q4                    

MSE 0.5  func 0.444 0.656 0.701  func 0.246 0.357 0.357  155 0.529 0.692 0.745  125 0.274 0.300 0.300 
 0.25  func 0.277 0.412 0.449  func 0.150 0.188 0.193  155 0.367 0.499 0.526  125 0.287 0.326 0.326 

MAE 0.5  func 0.141 0.184 0.194  func 0.162 0.211 0.214  100 0.386 0.482 0.482  75 0.306 0.344 0.344 
 0.25  func 0.083 0.105 0.111  func 0.043 0.063 0.064  100 0.203 0.234 0.274  75 0.168 0.189 0.189 

1995Q1:2000Q4                    

MSE 0.5  270 0.387 0.578 0.639  255 0.275 0.449 0.513  1 0.441 0.635 0.717  200 0.609 0.825 0.847 
 0.25  270 0.264 0.403 0.466  255 0.181 0.296 0.361  1 0.381 0.520 0.653  200 0.569 0.761 0.794 

MAE 0.5  270 0.884 0.997 0.997  225 0.763 0.953 0.964  1 0.102 0.256 0.319  175 0.674 0.863 0.869 
 0.25  270 0.879 0.996 0.998  225 0.728 0.938 0.969  1 0.085 0.210 0.316  175 0.680 0.856 0.857 

2001Q1:2005Q4                    

MSE 0.5  255 0.041 0.041 0.041  235 0.038 0.038 0.038  225 0.116 0.128 0.137  185 0.042 0.042 0.042 
 0.25  255 0.020 0.020 0.020  235 0.015 0.015 0.015  225 0.068 0.068 0.073  185 0.034 0.034 0.034 

MAE 0.5  255 0.037 0.038 0.038  235 0.005 0.005 0.005  225 0.150 0.181 0.200  195 0.069 0.069 0.071 
 0.25  255 0.023 0.026 0.026  235 0.001 0.001 0.001  225 0.101 0.121 0.137  195 0.024 0.024 0.024 
                      

Note: The number that appears under ‘Best’ refers to the number of days over which returns are aggregated in the best performing model in the 

model class (3). If ‘func’ appears in this column, this indicates that the best performing model is the functional forecasting model (2). 

 



  

Table 3 cotd.   Tests for Superior Predictive Ability 

   4 Month Horizon  5 Month Horizon  6 Month Horizon 

Metric q   Best SPAl  SPAc  SPAu   Best SPAl  SPAc  SPAu   Best SPAl  SPAc  SPAu  

1990Q1:1994Q4               

MSE 0.5  100 0.254 0.340 0.340  85 0.042 0.043 0.043  65 0.286 0.432 0.432 
 0.25  100 0.232 0.305 0.305  85 0.040 0.040 0.040  65 0.307 0.413 0.421 

MAE 0.5  230 0.178 0.211 0.211  85 0.001 0.001 0.001  65 0.317 0.345 0.357 
 0.25  230 0.109 0.125 0.125  85 0.000 0.000 0.000  65 0.273 0.300 0.308 

1995Q1:2000Q4               

MSE 0.5  185 0.230 0.293 0.293  210 0.285 0.483 0.485  190 0.045 0.048 0.048 
 0.25  185 0.088 0.116 0.116  210 0.118 0.212 0.214  190 0.016 0.017 0.017 

MAE 0.5  180 0.454 0.681 0.683  185 0.531 0.697 0.744  165 0.320 0.371 0.388 
 0.25  180 0.388 0.553 0.587  185 0.472 0.655 0.694  165 0.288 0.328 0.337 

2001Q1:2005Q4               

MSE 0.5  165 0.076 0.076 0.076  145 0.117 0.117 0.137  151 0.045 0.045 0.045 
 0.25  165 0.038 0.038 0.038  145 0.084 0.084 0.093  151 0.020 0.020 0.020 

MAE 0.5  165 0.001 0.001 0.001  145 0.183 0.234 0.243  151 0.047 0.047 0.047 
 0.25  165 0.000 0.000 0.000  145 0.149 0.192 0.197  151 0.020 0.020 0.020 
                 

Note: The number that appears under ‘Best’ refers to the number of days over which returns are aggregated in the best 
performing model in the model class (3). If ‘func’ appears in this column, this indicates that the best performing 
model is the functional forecasting model (2).  
1 The second best model is the model (3) with 125-day return. 



  

 
 
 

Figure 1    Quarterly Real Output Growth 1964Q1 to 2005Q4 
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Figure 2(a)   Estimated Coefficient Function for Daily Stock Returns (0 month horizon) 
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Note: ( )sβ  is the estimated coefficient function on daily stock returns for model (2), with s  from 
0 to 270, h  = 0.  



  

Figure 2(b)   Estimated Coefficient Function for Daily Stock Returns (3 month horizon) 
 

100 150 200 250 300
-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

s+h

β(s)

 
 
Note: ( )sβ  is the estimated coefficient function on daily stock returns for model (2), with s  from 
0 to 270, h  = 70. 



  

Figure 2(c)   Estimated Coefficient Function for Daily Stock Returns (6 month horizon) 
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Note: ( )sβ  is the estimated coefficient function on daily stock returns for model (2), with s  from 
0 to 270, h  = 130. 
 
 
 



  

Figure 3(a)  Realized Output with Functional Forecasts, Various Horizons 
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Note: Time series of forecasts (dots) from various models plotted against realizations of real 
output growth (solid line). The figure labeled ‘benchmark’ show forecasts from model (4) with 

*
1( )ky y t −= . The other figures show forecasts from model (2) for h  = 0, 20, and 40 (0 month, 1 

month, and 2 month horizons, resp.). 



  

Figure 3(b)  Realized Output with Functional Forecasts, Various Horizons 
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Note: Time series of forecasts (dots) from various models plotted against realizations of real 
output growth (solid line). The figure labeled ‘benchmark’ show forecasts from model (4) with 

*
2( )ky y t −= . The other figures show forecasts from model (2) for h  = 70, 90, and 110 (3 month, 

4 month, and 5 month horizons, resp.). 
 



  

Figure 3(c)  Realized Output with Functional Forecasts, Various Horizons 
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Note: Time series of forecasts (dots) from various models plotted against realizations of real 
output growth (solid line). The figure labeled ‘benchmark’ show forecasts from model (4) with 

*
3( )ky y t −= . The other figure show forecasts from model (2) for h  = 130 (6 month horizon.) 

 



  

Figure 4(a)  Realized Output with Linear Regression Forecasts, Various Horizons 
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Note: Time series of forecasts (dots) from various models plotted against realizations of real 
output growth (solid line). The figure labeled ‘benchmark’ show forecasts from model (4) with 

*
1( )ky y t −= . The other figures show forecasts from model (3) for h  = 0, 20, and 40 (0 month, 1 

month, and 2 month horizons, resp.). 



  

Figure 4(b)  Realized Output with Linear Regression Forecasts, Various Horizons 
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Note: Time series of forecasts (dots) from various models plotted against realizations of real 
output growth (solid line). The figure labeled ‘benchmark’ show forecasts from model (4) with 

*
2( )ky y t −= . The other figures show forecasts from model (3) for h  = 70, 90, and 110 (3 month, 

4 month, and 5 month horizons, resp.). 
 



  

Figure 4(c)  Realized Output with Linear Regression Forecasts, Various Horizons 
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Note: Time series of forecasts (dots) from various models plotted against realizations of real 
output growth (solid line). The figure labeled ‘benchmark’ show forecasts from model (4) with 

*
3( )ky y t −= . The other figure show forecasts from model (3) for h  = 130 (6 month horizon.) 

 
 

  
  


