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Abstract

This paper implements the Asymmetric Autoregressive Conditional Duration (AACD)

model of Bauwens and Giot (2003) to analyze irregularly spaced transaction data of

trade direction, namely buy versus sell orders. We examine the influence of lagged

transaction duration, lagged volume and lagged trade direction on transaction duration

and direction. Our results are applied to estimate the probability of informed trading

(PIN) based on the Easley, Hvidkjaer and O’Hara (2002) framework. Unlike the Easley-

Hvidkjaer-O’Hara model, which uses the daily aggregate number of buy and sell orders,

the AACD model makes full use of transaction data and allows for interactions between

buy and sell orders.
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1 Introduction

In this paper we implement the Asymmetric Autoregressive Conditional Duration (AACD)

model of Bauwens and Giot (2003) to analyze the trade direction of stock transactions (i.e.,

buy- versus sell-initiated stock trading) and the duration of these transaction jointly. We

apply the model to examine the intensity of informed versus uninformed trading and propose

a method to estimate the probability of informed trading (PIN) under the Easley, Hvidkjaer

and O’Hara (2002) (EHO hereafter) framework. Unlike the EHO method, however, which

uses the daily aggregate number of buy and sell orders to estimate PIN, our model enables

us to estimate PIN using irregularly spaced transaction data.

Easley, Kiefer and O’Hara (1996, 1997) develop the methodology of PIN and utilize

it to investigate the role of purchase order flows. Easley, Kiefer, O’Hara and Paperman

(1996) further extend the method to investigate stocks that trade infrequently. Since then

the PIN measure has been widely used in the empirical finance literature. For example,

Easley, O’Hara and Saar (2001) apply PIN to study the impact of stock splits on uninformed

traders. More recently, Aslan, Easley, Hvidkjaer and O’Hara (2006) use PIN to examine the

link between microstructure and asset pricing. Henry (2006) employs the PIN measure to

study the interaction between short selling and informed trading, while Benos and Jochec

(2006) confirm that PIN captures informed trading around earnings announcements. Chung

and Li (2003) utilize PIN to verify the appropriateness of decomposing bid-ask spreads into

adverse-selection and transitory components.

The AACD model is an extension of the Autoregressive Conditional Duration (ACD)

model introduced by Engle and Russell (1998) and Engle (2000). Recently, the literature on

the ACD model has expanded quickly, with contributions by Bauwens and Veredas (2004),

Fernandes and Grammig (2005), Ghysels, Gourieroux and Jasiak (2004), Grammig and

Maurer (2000), and Zhang, Russell and Tsay (2001), among others. For a comprehensive

survey of ACD models, see Pacurar (2006).

The ACD model analyzes the duration between two transactions, irrespective of the

nature of the transaction (such as an increase or decrease in the traded price, or a trade

initiated by a buy versus and sell order). Bauwens and Giot (2003) extend the ACD model
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to study the mid price of bid-ask quotes. They propose a two-state AACD model to an-

alyze mid-price decrease and mid-price increase jointly with the trade duration. In their

model the conditional expected duration of each state varies differently with the conditional

information, which includes the lagged duration, the lagged volume and the lagged spread.

In this paper we apply the AACD approach to a two-state model of transaction data,

where the two states represent a transaction initiated by a buy versus a sell order, called the

transaction direction. Following Bauwens and Giot (2003), we allow the expected duration

to vary with some covariates, including the lagged duration, the lagged expected duration,

the lagged direction of trade and the lagged trade volume. We construct AACD equations

that reflect the changes in the trading activities due to informed traders. The AACD model

is then used to estimate PIN. Our new method makes full use of transaction data and relaxes

several assumptions in the EHO model.

The balance of the paper is as follows. In the next section, we summarize the AACD

model as applied to trade direction and trade duration data. We outline the model as one

based on competing risks, in which the underlying competing latent processes have inter-

arrival times that are distributed as two-parameter Weibull random variables. In Section 3

we discuss the application of the AACD model under the EHO framework, which assumes

trading intensities vary in trading days with no news, good news and bad news. Section 4

describes the data, and Section 5 reports our empirical results. Our conclusions are summa-

rized in Section 6.

2 The AACD Model of Trade Direction

We consider a two-state AACD model of trade direction. Let wi denote the trade direction

of the ith trade at time ti, which may take values of j = −1 or 1 representing a sell-

initiated and buy-initiated trade, respectively. We denote Φi−1 as the information set after

the (i − 1)th trade. Φi−1 may consist of past trade directions, volumes of transaction and

lagged durations. Given Φi−1 we assume each of the two potential trade directions of the

trade at time ti follows a latent stochastic point process whose inter-arrival times have

independent Weibull distributions. The realized (observed) trade direction is the outcome
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of a competition between the two underlying point processes to be the first arrival.

Specifically, we denote the random duration for the next potential trade direction by

Tji for j = −1 and 1 (the subscript i refers to the ith trade). Conditional on Φi−1, Tji

are assumed to be independently distributed as two-parameter Weibull random variables

with scale parameter ψji and shape parameter φj. Both the shape and scale parameters

are assumed to be positive. In particular, we allow the shape parameter φj, which are time

invariant, to vary with the latent process of trade direction j. On the other hand, the scale

parameter ψji of each latent process changes after each transaction. Thus, conditional on

the information set Φi−1 after the (i− 1)th trade, the inter-arrival time random variables of

the latent processes have the following density function

fTji
(t) =

φj

ψji

(
t

ψji

)φj−1

exp

−( t

ψji

)φj
 , j = −1, 1, (1)

and survival function (complement of the distribution function, i.e., 1−FTji
(t), where FTji

(t)

is the distribution function)

STji
(t) = exp

−( t

ψji

)φj
 , j = −1, 1. (2)

Furthermore, the expected values of the inter-arrival time variables are

E(Tji) = ψji Γ

(
1

φj

+ 1

)
, (3)

where Γ(·) is the gamma function. Thus, the expected duration of the inter-arrival time is

proportional to the scale parameter.

Denoting the duration of the ith trade (i.e., the waiting time from time ti−1 of the (i−1)th

trade to time ti of the ith trade) by xi = ti − ti−1 and the direction of the ith trade by wi

(note that wi is either −1 or 1), the conditional joint density of (wi, ti) (or equivalently

(wi, xi)), denoted by pi(wi, ti|Φi−1), is

pi(k, ti|Φi−1) = Pr

 ⋂
j=−1,1

{Tji > xi}

 fTki
(xi|Thi > xi;h = −1, 1)

=

 ∏
j=−1,1

STji
(xi)

 fTki
(xi)

STki
(xi)

=

 ∏
j=−1,1

STji
(xi)

 φk

ψki

(
xi

ψki

)φk−1

, k = −1, 1. (4)
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Hence, if we define Dh(j) = 1 for h = j, and 0 otherwise, the conditional joint density of

(wi, ti) is

pi(k, ti|Φi−1) =
∏

j=−1,1

 φj

ψji

(
xi

ψji

)φj−1
Dk(j)

exp

−( xi

ψji

)φj
 , k = −1, 1. (5)

Given a sample of observations {wi, ti} for i = 1, . . . , N , the log-likelihood function is

N∑
i=1

ln pi(wi, ti|Φi−1) = −
N∑

i=1

 ∑
j=−1,1

(
xi

ψji

)φj

−
∑

j=−1,1

Dwi
(j) ln

 φj

ψji

(
xi

ψji

)φj−1
 . (6)

Thus, the parameters of the model can be estimated using maximum likelihood estimation

(MLE) method once the functional forms of the scale parameters ψji are specified. As the

conditional expected duration is proportional to the scale parameter, we apply the ACD

model to the scale parameter. For example, the conditional scale parameter may be updated

according to the following equation

lnψji = νj,−1D−1(wi−1) + νj1D1(wi−1) + αj lnψj,i−1 + βj lnxi−1, j = −1, 1. (7)

In equation (7), we have an extended ACD(1,1) structure, where the constant term in

the usual ACD equation is replaced by the intercepts νj,−1 and νj1 that vary according to the

previous trade direction wi−1. As seen in equation (3), an increase (decrease) in ψji implies

a larger (smaller) expected duration, which in turn implies a reduced (increased) probability

that the transaction at time ti is of type j. The intercepts νjk represent the sensitivity of the

next trade direction j to the prior trade direction k. Thus, if the previous trade direction is

of type k, the intercept for lnψji is νjk. A larger (smaller) νjk implies that trade direction k

induces a larger (smaller) expected duration of the next trade direction being of type j. The

remaining sets of α and β coefficients are those of an ACD(1,1) model. If β−1 is smaller than

β1, a longer lagged duration implies a lower conditional expected duration of a sell-initiated

trade than a buy-initiated trade.

If the shape parameters of the two latent competing processes of trade directions are

equal, i.e., φ−1 = φ1 = φ, say, equation (5) can be simplified as follows

pi(k, ti|Φi−1) =
φ

ψki

(
xi

ψki

)φ−1

exp

− ∑
j=−1,1

(
xi

ψji

)φ
 , k = −1, 1. (8)
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In this special case it is straightforward to obtain the marginal densities of wi and xi. Thus,

if we define ψi by

ψi =

 1

ψφ
−1,i

+
1

ψφ
1i

− 1
φ

, (9)

the conditional marginal density of xi is

fxi
(x|Φi−1) =

φxφ−1

ψφ
i

exp

−( x
ψi

)φ
 . (10)

Also, the conditional marginal density of wi is

fwi
(k|Φi−1) =

(
ψi

ψki

)φ

, k = −1, 1. (11)

Hence, conditional on Φi−1, xi has a two-parameter Weibull distribution with shape parame-

ter φ and scale parameter ψi. Likewise, conditional on Φi−1, xi has a multinomial distribution

with probabilities proportional to 1/ψφ
ki for k = −1, 1.

Note that the product of the expressions in (10) and (11) is equal to that in (8). Thus,

under the special case when the shape parameters of the latent processes are equal, the

trade direction wi and the trade duration xi are independent conditional upon the informa-

tion Φi−1. As shown in Section 4, the estimated shape parameters of the latent processes

are very close for all the data sets considered. Furthermore, the estimates of the other pa-

rameters in the model are quite similar whether the equal-shape assumption is imposed or

not. Thus, imposing equal shape is theoretically convenient and appears to be empirically

robust. In an extensive study to investigate various ACD models, Bauwens, Giot, Gram-

mig and Veredas (2004) compare different distribution assumptions, including the Poisson,

Weibull, Burr, generalized Gamma, threshold and stochastic conditional duration models.

They conclude that “simpler approaches perform at least as well as more complex methods”.

In this paper we adopt the assumption of Weibull distributions with equal shape parameters

for its theoretical convenience without compromising its empirical performance.

3 Estimation of PIN

EHO analyze trade-direction data to estimate the proportion of trades initiated by informed

traders. Their model is based on the numbers of buy and sell orders in each day, the
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intensities of which depend on the existence of “news” or information. Conditional on the

arrival of news, information is further classified as being either “good” or “bad”. EHO model

the aggregate numbers of buy- and sell-initiated trades in each day as independent Poisson

variables, with different intensities for days with no news, good news and bad news. The

characterization of each trading day is unknown, and its likelihood is based on the mixture-

of-Poisson distribution. The probability of informed trading (PIN) is then calculated as the

ratio of the combined intensity for buy- and sell-initiated trades for days with news divided

by the total intensity over all days.

In the EHO framework each trading day is characterized by good news (G), no news (N)

and bad news (B) to form the set S = {G,N,B}. We denote πs as the probability of state

s in S. Let the probability of a day containing news be θE. Furthermore, conditional on the

arrival of news, denote the probability of bad news as θB. Thus, the probability of a no-news

day is πN = 1 − θE, and the probabilities of good- and bad-news days are πG = θE (1 − θB)

and πB = θE θB, respectively. EHO assume the aggregate numbers of buy and sell orders

in a trading day follow independent Poisson distributions, where the intensities of sell and

buy orders on a no-news day, denoted by λ−1 and λ1, respectively, are constant throughout

the sample period. On a good-news day, the buy intensity increases by a positive amount δ,

with no change in the sell intensity. Likewise, on a bad-news day, the sell intensity increases

by δ while the buy intensity remains unchanged. Suppose there are D days of data. Under

the mixture-of-distributions assumption, the likelihood function of the model is given by

D∏
d=1

{
(1 − θE)

λBd
1 e−λ1

Bd!

λSd
−1e

−λ−1

Sd!
+ θE θB

λBd
1 e−λ1

Bd!

(λ−1 + δ)Sd e−(λ−1+δ)

Sd!
(12)

+ θE (1 − θB)
(λ1 + δ) e−(λ1+δ)

Bd!

λSd
−1 e

−λ−1

Sd!

}
,

where Bd and Sd are the respective aggregate number of buy and sell orders on day d. From

this model, EHO’s suggested estimate of PIN is calculated as

PIN =
θEδ

θEδ + λ−1 + λ1

. (13)

We propose to model the buy- and sell-initiated orders by applying the AACD approach

to a two-mark process describing the buy- and sell-initiated transactions. Our model allows

the parameters to vary according to whether there is news for the trading day. We refer to
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this model as the PIN-AACD model, as opposed to the PIN-EHO model of Easley, Hvidkjaer

and O’Hara (2002). Our PIN-AACD implementation relaxes several PIN-EHO assumptions.

Specifically, the following extensions are made: (i) volume is incorporated, (ii) independence

between the number of buy and sell orders each day is relaxed, (iii) trade orders are allowed to

be serially correlated, and (iv) transaction duration and trade direction are modeled jointly.

The PIN-AACD model uses transaction data of trade directions and does not just model

the daily aggregates of buy and sell orders. Summarizing the cumulative trade flow in daily

aggregates may result in a loss of information. Modeling transaction data, the PIN-AACD

model accounts for autocorrelation in trade directions and can incorporate trade volume

into the estimation of PIN.1 Another potential limitation of the PIN-EHO approach is the

assumption that the number of daily buy and sell orders are independent. In contrast,

the PIN-AACD model allows the interactions between consecutive buy and sell orders to

be updated after each transaction. This implies the conditional durations, and thus the

associated intensities, of buy and sell orders influence one another.

We modify equation (7) to describe the evolution of the conditional scale parameters in

trading days with or without news. First we denote ψs
ji as the conditional scale parameter of

trade direction j in state s ∈ S given information Φi−1 after the trade at time ti−1, where the

specification of ψs
ji must reflect the activities of informed and uninformed traders. We then

define the following function f s
ji, which forms the basis of the equations for the conditional

scale parameter in each of the three states in S,

f s
ji ≡ νj,−1D−1(wi−1) + νj1D1(wi−1) + αj lnψs

j,i−1 + βj lnxi−1 , j = −1, 1 . (14)

Thus, the basis f s
ji depends on whether the previous transaction is a buy- or sell-initiated

order, as well as the lagged duration and previous conditional scale parameter of the order

mark.

According to the assumptions of EHO, only uninformed traders are active in the absence

of any news. When there is good news, informed traders purchase shares, increasing the

trading intensity of buy orders. Conversely, when there is bad news, informed traders sell

1Easley, Hvidkjaer and O’Hara (2002) report that informed trading estimates are negatively correlated

with volume, which remains a determinant of asset prices, but they omit this variable for computational

tractability.
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shares and increase the trading intensity of sell orders. However, the trading intensity of sell

orders on a good-news day and the trading intensity of buy orders on a bad-news day are

identical to their counterparts on a no-news day.

Thus, for a no-news day (s = N), we assume a simple functional form for the logarithmic

conditional scale parameter, with

lnψN
ji = fN

ji , j = −1, 1 . (15)

For the buy-orders (j = 1) on a good-news day (s = G) we reduce fN
1i by a positive constant

µ to yield the following logarithmic conditional scale parameter

lnψG
1i = fG

1i − µ, (16)

while the logarithmic conditional scale parameter for sell trade is the same as the basis

function fG
−1,i, i.e.,

lnψG
−1,i = fG

−1,i . (17)

On the other hand, for s = B, we have

lnψB
1i = fB

1i , (18)

and

lnψB
−1,i = fB

−1,i − µ. (19)

According to equation (18), ψB
1i represents the conditional scale parameter of a buy order

on a bad-news day, which is based on the benchmark function fB
1i without adjustment.

However, the logarithmic conditional scale parameter of a sell order lnψB
−1,i on a bad-news

day decreases by µ due to selling by informed traders. As seen in equation (16), on a good-

news day, the logarithmic conditional scale parameter of a buy order decreases by µ due to

the buying of informed traders. However, the logarithmic conditional scale parameter of sell

orders on good-news days, lnψG
−1,i, remain unchanged versus that of a no-news day, as seen

in equation (17).

Given that a certain day is of type s, the joint density of {wi, ti} conditional on the

information set Φi−1 is given in equation (5), which is rewritten below to incorporate the

variations with respect to the state of the news:
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psi(k, ti|Φi−1) =
∏

j=−1,1

 φj

ψs
ji

(
xi

ψs
ji

)φj−1
Dk(j)

exp

−( xi

ψs
ji

)φj
 , k = −1, 1; s ∈ S. (20)

Let Nd = Sd +Bd denote the number of trades on day d. The likelihood function is then

given by
D∏

d=1

∑
s∈S

πs

Nd∏
i=1

psi(wi, ti|Φi−1)

 . (21)

Note that the term in the inner brackets of equation (21) is the likelihood function for day

d, given that day d is in state s (the index d for the {wi, ti} data is suppressed).

In the PIN-EHO model, the Poisson assumption is adopted so that the hazard rate is

constant and is equal to the reciprocal of the expected duration, which is used as a measure of

the intensity. Under the Weibull assumption, however, the hazard rate is not constant, but is

a decreasing function of the duration when the shape parameter is less than 1, as is the case

empirically in this study.2 Hence, we propose to use the reciprocal of the expected conditional

duration as a measure of the intensity. Under the special case the shape parameters of the

two latent processes are equal, PIN is simple to calculate. Let λs
ji = 1/ψs

ji. If the shape

parameters are equal, PIN can be calculated as follows

PIN =

∑D
d=1

∑Nd
i=1(πG λ

G
1i + πB λ

B
−1,i)∑D

d=1

∑Nd
i=1(λ

N
−1,i + λN

1i + πG λG
1i + πB λB

−1,i)
, (22)

where again the index d for the intensities is suppressed.

Finally, we extend equation (14) to incorporate the influence of volume on the PIN esti-

mates. In particular, wi−1 ln si−1 may be added to equation (14) to construct an augmented

PIN-AACD model whose conditional scale parameters are based on modifying f s
ji defined by

f s
ji ≡ νj,−1D−1(yi−1) + νj1D1(yi−1) + αj lnψs

j,i−1 + βj lnxi−1 + ςj yi−1 ln si−1 , j = −1, 1 .

(23)

We expect ς−1 > 0 and ς1 < 0, implying a large buy order induces a shorter expected duration

for a subsequent buy order but a longer expected duration for a sell order, with a large sell

2The hazard function of a two-parameter Weibull random variable Y with shape parameter φ and scale

parameter ψ is φyφ−1/ψφ, which is a decreasing function of y when φ < 1.
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order having the opposite effect.3 Once the conditional scale parameters are estimated, PIN

measures are calculated using equation (22).

4 Data

We apply the AACD model to intraday data of five NYSE companies: Boeing (BA), General

Electric (GE), International Business Machines (IBM), Altria Group (formerly Philip Morris)

(MO), and AT&T (T). The data are obtained from the TAQ database for July 1, 1994 to

June 30, 1995.

We extract three variables on each stock: time of trade, transaction price, and signed

volume inferred using the Lee and Ready (1991) algorithm. We also correct for the opening

auction and for time-of-day effects, using procedures similar to those in Engle and Russell

(1998). In particular, opening effects require the transactions occurring in the first 20 min-

utes of each day to be removed. The average duration for transactions over the following 10

minutes serves as the waiting time for the first trade after 10:00 a.m. (E.S.T.). All trans-

actions recorded after 4:00 p.m. are also deleted. In some cases, the opening transaction

occurred after the first 20 minutes. Also, on a few days there are insufficient transactions be-

tween 9:50 a.m. and 10:00 a.m. to obtain a meaningful average starting duration. Therefore,

days with opening transactions after 9:50 a.m. and with less than three transactions over the

next 10 minutes are also removed, along with November 25, 1994 due to an early “day after

Thanksgiving” closing. Even after these deletions, a tremendous number of observations for

each company remain, as documented in Table 1.

We estimate diurnal factors by applying a smoothing spline to the average duration at

each time point with available data.4 The diurnally adjusted durations are then formed

by dividing each duration with the corresponding diurnal factor. For the remainder of this

3We may further allow variations in ς with respect to the information environment by supplementing the

index s to obtain ςsj for s ∈ S. However, this may lead to over-parametrization and is not pursued in this

paper.
4We used the MATLAB function csaps.m to compute the smoothing spline. The diurnal factor is adjusted

to ensure the sample mean of the diurnally-adjusted durations is equal to the sample mean of the non-

diurnally-adjusted data.
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paper, durations xi refer to mean-diurnally-adjusted durations. The diurnal factors for all

five duration series are similar to those in Engle and Russell (1998). In particular, the diurnal

factors initially increase, with the largest diurnal factor occurring at the middle of the day,

before decreasing.

Some summary statistics of the data are given in Table 1. The number of observations

available for BA is substantially lower than the other stocks, primarily due to less frequent

trading as indicated by its average duration. The average number of trades per day varies

from a low of 243.3 (BA) to a high of 677.9 (GE). The runs tests indicate that there is

positive serial correlation in the directions of the trade. GE and T have more than 50% of

buy trades, while the other three stocks have more sell trades than buy trades.

5 Empirical Results

Results of the PIN-EHO model are summarized in Table 2. The PIN estimates vary from

the lowest value of 0.0879 for MO to the highest value of 0.1342 for BA. Note that BA is the

stock with the lowest average daily trade in the sample. If we measure the relative intensity

of informed traders versus uninformed traders by 2δ̂/(λ̂−1 + λ̂1), the relative intensity of BA

(0.883) is the highest in the sample and the relative intensity for GE (0.437) is the lowest.

Thus, although BA has a lower probability of news than that of GE, it has a higher PIN. On

the other hand, though MO has a higher relative intensity (0.718) than that of GE, since its

probability of informed trading is very low, it has the lowest PIN in the sample.

The results of the PIN-AACD model are presented in Table 3. For each stock we estimate

the model with equal and unequal shape parameters. The results show that the estimated

shape parameters for the sell and buy orders are quite close. Furthermore, when the equality

of the two parameters is imposed, the estimates of the other parameters remain quite stable.

Thus, for further analysis we adopt the model with equal shape parameters.5 We report

some diagnostics of the PIN-AACD model. The diagnostics are based on the marginal

distributions of the transaction duration and the trade direction. As the transaction duration

5We report that formal tests of the equality of the parameters reject the null at conventional levels of

significance, which is due to the large sample size.
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is a continuous random variable we use the empirical probability integral transform, which

was proposed by Diebold, Gunther and Tay (1998) to assess density forecasts and adopted

by Bauwens, Giot, Grammig and Veredas (2004) to analyze transaction-duration models.

The method involves plotting the empirical probability integral transform of the transaction

duration, which is uniformly distributed under the correct specification. As the marginal

distribution of transaction duration is given in equation (10) under the model with equal

shape parameters, the probability integral transform of the transaction duration xi of the

PIN-ACCD model, denoted by F̂ (xi), is given by

F̂ (xi) =
∑
s∈S

π̂s

1 − exp

−( xi

ψ̂s
i

)φ̂
 , i = 1, · · · , N, (24)

where ψs
i is ψi in state s defined in equation (9).

As the direction of trade is a discrete random variable, we use the Brier score based on

the absolute difference between the observed value of the trade direction and the probability

of the trade direction. Specifically, we denote the predicted probability of a buy-trade in the

ith transaction by ŷi , which is given by (see equation (11))

ŷi =
∑
s∈S

π̂s

(
ψ̂s

i

ψ̂s
1i

)φ̂

, i = 1, · · · , N. (25)

Then the Brier score based on the absolute difference is calculated as

1

N

N∑
i=1

|ŷi − zi|, (26)

where zi is the indicator variable which takes value 1 when wi = 1 and zero otherwise. When

trade-direction forecast is perfect (i.e., ŷi take the values of 1 or 0 that coincide with zi),

the Brier score attains its minimum value of zero. The worst performance is when the Brier

score is 1.

Figure 1 plots the empirical density functions of the estimated probability integral trans-

forms of the transaction durations F̂ (xi) of the five stocks. It can be seen that the distribu-

tions do not behave like a uniform distribution when the duration is very short. Otherwise,

the uniform distribution appears to describe the transformation well in other parts of the

distribution. This finding is similar to those of Bauwens, Giot, Grammig and Veredas (2004).

We also compute the autocorrelations of F̂ (xi) up to 30 lags. The autocorrelations at all

13



lags are statistically significant, except the first order autocorrelation for BA, MO, and T.

All autocorrelations are, nonetheless, extremely small (less than 0.09 in absolute value). The

Brier scores are reported in the last row of Table 3. It can be seen that all results are less

than 0.5. The best performance is for the IBM data, with a Brier score of 0.3657, and the

worst performance is for the MO data, with a Brier score of 0.4353. Overall, the diagnostics

appear to support the AACD model.

Estimates of the ACCD model for trade direction exhibits a remarkable resemblance

across the five firms. In particular, we observe the following. Firstly, ν̂−1,−1 < ν̂−1,1 and

ν̂11 < ν̂1,−1, implying that buy trades induce lower conditional expected duration of buy

trades than sell trades, and sell trades induce lower conditional expected duration of sell

trades than buy trades. This is consistent with positive serial correlation in trade direction.

Secondly, ς̂−1 > 0 and ς̂1 < 0, implying large buy orders induce shorter conditional expected

durations for subsequent buy orders but longer conditional expected durations for sell orders.

The opposite is true for large sell orders. Thus, volume plays an explicit role in predicting

trade directions. The estimates of α−1+β−1 and α1+β1 for all stocks are generally comparable

and are not close to one, indicating persistence is moderate.

The shape parameters across the stocks are quite similar and they are all less than 1.

The two-parameter Weibull distribution nests the exponential distribution as a special case,

and our results suggest that assuming Poisson arrival for the buy and sell orders may result

in misspecification. We observe big drops in the PIN in the GE and IBM data when the

PIN-AACD model is used versus the PIN-EHO model. In these two cases, the estimates of

the probability of news are much reduced in the AACD model, causing the PIN estimates

to drop. On the other hand, the PIN-ACCD of the BA data increases versus the PIN-EHO.

Indeed, for the BA data, the estimate of the adjustment for information µ is the highest

among all stocks, suggesting the relative intensity of informed traders are high when there

is news. Overall, the probability of news appears to be quite even across the stocks, with

MO and T being the stocks with least news.
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6 Conclusions

This paper implements an AACD model to explore the impact of previous trade variables

such as direction, volume, duration and their interactions on subsequent arrival times and

trade direction. The two-parameter Weibull model nests the exponential distribution as a

special cases, and the use of transaction data allows us to model the interaction between buy

and sell orders. In particular, independence between the buy and sell orders is not imposed.

The AACD model provides forecasts of where the trade direction is heading by making use

of transaction data.

Several extensions of the PIN-AACD model can be considered. First, we may endogenize

the probability of no news, good news and bad news. This could be done by constructing

models based on aggregate data of each trading day. This approach may result in PIN

estimates on a daily basis. The estimates may then be applied to study the impact of

various events on trading using an event-study method. Second, we may adopt a procedure

of assigning or classifying trading days by category of news. This series may be used to

define the ACD equations, perhaps using a dummy variable technique. Overall, the use of

transaction data opens up other possibilities of estimating PIN by relaxing several restrictions

in the EHO model. The estimates can be applied in the literature in studying the effects of

asymmetric information on asset prices.
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Table 1. Summary Statistics of Duration and Trade Direction

Ticker Symbols

Statistics BA GE IBM MO T

Average Diurnally Adjusted Duration (in seconds)

All Trades x 88.78 31.83 41.42 48.88 39.29

Buy-initiated Trades bψ1 197.86 55.23 86.31 110.29 72.29
Sell-initiated Trades bψ−1 161.04 75.12 79.64 87.79 86.07

Order-Flow Statistics (volume in lots)

Frequency of Buys (%) 44.87 57.63 47.99 44.32 54.35
Frequency of Sells (%) 55.13 42.37 52.01 55.68 45.65
Serial Correlation of Trade Direction 0.35 0.32 0.52 0.32 0.40
Runs Test of Trade Direction −81.32 −132.56 −186.27 −105.77 −146.61
Average Volume (lot size) 27.80 19.91 30.83 31.48 25.31
Average Log Volume 1.97 1.70 2.36 2.13 1.61
Average Daily Number of Trades 243.30 677.90 521.10 442.30 549.10
Average Daily Number of Buy-Trades 109.17 390.67 250.08 196.03 298.44
Average Daily Number of Sell-Trades 134.13 287.23 271.02 246.27 250.66
Number of Observations in Sample 54,500 170,157 129,239 110,120 135,087
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Table 2. Estimates of PIN-EHO Model

Ticker Symbols

Variables Parameters BA GE IBM MO T

Intensity for Sell-Initiated Trade λ−1 98.7929 345.8723 200.8416 175.2851 235.5643
(3.2689) (6.5457) (6.4490) (5.1569) (4.8911)

Intensity for Buy-Initiated Trade λ1 110.9957 269.7381 251.5821 227.1735 241.7717
(3.6987) (4.7169) (6.6138) (5.9444) (5.6469)

Adjustment for Information δ 92.6196 134.4572 148.5920 144.5634 200.0465
(6.8988) (8.6544) (8.9076) (15.4491) (17.5005)

Probability of News θE 0.3511 0.4560 0.4556 0.2683 0.3539
(0.0366) (0.0426) (0.0347) (0.0350) (0.0358)

Given News, Probability of Bad News θB 0.6859 0.2870 0.2858 0.4443 0.1433
(0.0758) (0.0611) (0.0684) (0.1010) (0.0555)

PIN 0.1342 0.0906 0.1302 0.0879 0.1292

Figures in parentheses are standard errors.

19



Table 3. Estimates of the PIN-AACD Model and PIN

Ticker Symbols

Trade Variables Parameters BA GE IBM MO T

Sale after Sale v−1,−1 2.0089 2.0364 2.3578 2.3375 2.9924 2.9425 1.9095 1.9049 1.7145 1.7101
(0.2186) (0.2150) (0.0831) (0.0737) (0.0949) (0.0866) (0.1365) (0.1376) (0.0866) (0.0871)

Sale after Buy v−1,1 2.3501 2.3910 2.7250 2.7151 3.9757 3.9451 2.1540 2.1531 2.2727 2.2620
(0.2329) (0.2291) (0.0875) (0.0790) (0.1158) ((0.1111) (0.1489) (0.1497) (0.1045) (0.1052)

Buy after Sale v1,−1 2.1333 2.0615 1.8331 1.8447 3.1139 3.1335 1.8436 1.8364 2.2709 2.2775
(0.2230) (0.2352) (0.0703) (0.0608) (0.1451) (0.1321) (0.1521) (0.1609) (0.0850) (0.0851)

Buy after Buy v11 1.7404 1.6929 1.6868 1.7018 2.2876 2.3329 1.5357 1.5357 1.7295 1.7315
(0.1980) (0.2095) (0.0694) (0.0603) (0.1298) (0.1080) (0.1409) (0.1490) (0.0713) (0.0713)

Conditional Duration for Sales α−1 0.5322 0.5259 0.3872 0.3898 0.1784 0.1825 0.4789 0.4787 0.4773 0.4786
(0.0389) (0.0381) (0.0157) (0.0149) (0.0171) (0.0170) (0.0273) (0.0273) (0.0191) (0.0193)

Lagged Duration for Sales β−1 0.0890 0.0895 0.0702 0.0715 0.1043 0.1078 0.1193 0.1204 0.1332 0.1331
(0.0057) (0.0058) (0.0046) (0.0041) (0.0060) (0.0059) (0.0062) (0.0063) (0.0046) (0.0046)

Conditional Duration for Buys α1 0.5511 0.5617 0.5331 0.5314 0.3388 0.3369 0.5452 0.5464 0.4847 0.4839
(0.0352) (0.0374) (0.0140) (0.0130) (0.0202) (0.0197) (0.0251) (0.0265) (0.0156) (0.0157)

Lagged Duration for Buys β1 0.1276 0.1267 0.0714 0.0701 0.1417 0.1379 0.1529 0.1517 0.1209 0.1210
(0.0073) (0.0072) (0.0039) (0.0033) (0.0074) (0.0068) (0.0078) (0.0079) (0.0042) (0.0042)

Adjustment for Information μ 0.5240 0.5245 0.2771 0.2783 0.3901 0.3983 0.4479 0.4453 0.4863 0.4866
(0.0261) (0.0274) (0.0134) (0.0141) (0.0208) (0.0240) (0.0363) (0.0360) (0.0353) (0.0356)

Probability of News θE 0.3191 0.3174 0.3850 0.3802 0.3342 0.3444 0.2046 0.2044 0.2459 0.2456
(0.0369) (0.0368) (0.0382) (0.0383) (0.0485) (0.0364) (0.0304) (0.0305) (0.0411) (0.0409)

Given News, Probability of Bad News θB 0.9515 0.9457 0.4751 0.3902 0.4206 0.2676 0.7361 0.7101 0.0378 0.0375
(0.0359) (0.0404) (0.1890) (0.1243) (0.2715) (0.1163) (0.1058) (0.1287) (0.0527) (0.0430)

Volume - Direction for Sales ς−1 0.0410 0.0423 0.1041 0.1058 0.0227 0.0232 0.0555 0.0561 0.0475 0.0471
(0.0051) (0.0051) (0.0037) (0.0037) (0.0037) (0.0037) (0.0035) (0.0036) (0.0033) (0.0033)

Volume - Direction for Buys ς1 —0.0565 —0.0545 —0.1079 —0.1069 —0.0445 —0.0445 —0.0700 —0.0692 —0.0427 —0.0430
(0.0055) (0.0055) (0.0039) (0.0038) (0.0041) (0.0037) (0.0042) (0.0042) (0.0031) (0.0032)

Shape parameter of sell order φ−1 0.9087 0.8971 0.9163 0.9116 0.8551
(0.0053) (0.0039) (0.0052) (0.0043) (0.0040)

Shape parameter of buy order φ1 0.8544 0.8616 0.8735 0.8857 0.8680
(0.0056) (0.0040) (0.0050) (0.0047) (0.0037)

Shape parameter of sell and buy orders φ 0.8834 0.8766 0.8952 0.8999 0.8620
(0.0042) (0.0030) (0.0039) (0.0039) (0.0032)

PIN 0.1530 0.0444 0.0871 0.1068 0.1347

Brier Score 0.4304 0.4187 0.3657 0.4353 0.4097

For each stock models with equal and unequal shape parameters of the latent sell- and buy-order processes are estimated. Figures in parentheses are standard errors. The PIN

estimates are based on the model with equal shape parameters.
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Figure 1: Empirical density function of the probability integral transform of the transaction duration of the PIN-ACCD model
 




