
 
 

ANY OPINIONS EXPRESSED ARE THOSE OF THE AUTHOR(S) AND NOT NECESSARILY THOSE OF 
THE SCHOOL OF ECONOMICS & SOCIAL SCIENCES, SMU 

 

 

 
 
 
 
 
 
 

 
 

On Joint Modelling and Testing for Local 
and Global Spatial Externalities 

 
 

 
 
 
 
 
 

Zhenlin Yang 
October 2006 

 
 
 
 
 
 

   Paper No. 25-2006 

SSSMMMUUU   EEECCCOOONNNOOOMMMIIICCCSSS   &&&   SSSTTTAAATTTIIISSSTTTIIICCCSSS   
WWWOOORRRKKKIIINNNGGG   PPPAAAPPPEEERRR   SSSEEERRRIIIEEESSS 



On Joint Modelling and Testing for Local
and Global Spatial Externalities 1

Zhenlin Yang

School of Economics and Social Sciences, Singapore Management University,

90 Stamford Road, Singapore 178903. zlyang@smu.edu.sg

October 2006

Abstract

This paper concerns the joint modeling, estimation and testing for local and

global spatial externalities. Spatial externalities have become in recent years a

standard notion of economic research activities in relation to social interactions,

spatial spillovers and dependence, etc., and have received an increasing attention

by econometricians and applied researchers. While conceptually the principle un-

derlying the spatial dependence is straightforward, the precise way in which this

dependence should be included in a regression model is complex. Following the

taxonomy of Anselin (2003, International Regional Science Review 26, 153-166),

a general model is proposed, which takes into account jointly local and global ex-

ternalities in both modelled and unmodelled effects. The proposed model encom-

passes all the models discussed in Anselin (2003). Robust methods of estimation

and testing are developed based on Gaussian quasi-likelihood. Large and small

sample properties of the proposed methods are investigated.
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1 Introduction

Spatial dependence or social interaction among the economic or social actors has

recently received a greatly increased attention (Anselin 2003; Goodchild et al. 2000;

Glaeser et al. 1996; Akerlof 1997; Abbot 1997; Sampson et al. 1999). Spatial economet-

ric models and methods have been applied not only in specialized fields such as regional

science, urban economics, real estate and economic geography, but also increasingly

in more traditional fields of economics as well, including demand analysis, labor eco-

nomics, public economics, international economics, and agricultural and environmental

economics (see reviews in Anselin and Bera 1998; Anselin 2001; and Elhorst 2003).

While conceptually it is straightforward to see the principle underlying the resulting

spatial dependence, the precise way in which this dependence should be included in

a regression model is rather complex. Very recently, the notions of local and global

externalities or short range and long range spatial dependence were brought up by

Anselin (2003), which since then has caught the attention of many econometricians and

applied researchers. Anselin provided a comprehensive taxonomy of spatial econometric

models according to different kinds of spatial externalities in an effort to better reconcile

econometric practice with theoretical developments. However, the problems of model

estimation and testing for some models are not considered; joint modeling and testing

of local and global spatial externalities is not discussed; and consistency and asymptotic

normality of the parameter estimates for certain models are not formally treated. Thus,

it is highly desirable to“unify” all the available models and develop general methods of

inference, allowing flexible spatial patterns in the model so that an appropriate one can

be identified by the data through testing.

In this article, I propose a general model that takes into account of local and global

externalities jointly, in both modelled effects as well as unmodelled effects. The proposed

model contains the models discussed in Anselin (2003) and other models available in

the literature as special cases. I propose using the quasi-maximum likelihood method

(QMLE) for model estimation. QMLE is advantageous over the traditional maximum

likelihood estimation (MLE) method in that it is robust against misspecification in error
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distribution, and is advantageous over the IV or GMM in that it is applicable to a pure

spatial process (a model of no covariates), see Lee (2004a). The problem of parameter

identifiability, and the consistency and asymptotic normality of the QMLE are formally

treated, to set foundations for formal statistical inferences. Tests (joint or marginal)

for local and global externalities are developed to facilitate the practitioners to choose

the model. These tests all possess simple analytical expressions, and are robust against

nonnormality of the error distributions. Monte Carlo simulation shows that both the

QMLEs and the tests perform very well in finite samples.

The rest of the paper is organized as follows. Section 2 presents the general model

and the quasi-maximum likelihood estimation (QMLE) procedure. Section 3 treats the

problems of parameter identifiability, and the consistency and asymptotic normality of

the QMLE. Section 4 presents various tests for spatial externalities. Section 5 presents

Monte Carlo results for finite sample performance of the proposed methods. Section 6

concludes the paper.

2 A General Spatial Regression Model

In this section, I present a general spatial regression model that takes into account

of local and global externalities in the modelled effects as well as the local and global

externalities in the unmodelled effects, focusing more on the practical issues of model

estimation and covariance estimation to facilitate the practical applications.

2.1 The model

For an n× n spatial contiguity weights matrix Wn, multiplication of In + ρWn on a

variable generates a local spatial externality, and multiplication of (In − ρWn)
−1 on a

variable generates a global spatial externality, where In is an n× n identity matrix and
ρ is a spatial parameter. See Anselin (2003, Sec. 2) for detailed explanations. A natural

generalization of these ideas is to multiply (In + ρ1W
f
n)(In − ρ2W

g
n)
−1 on a variable

to generate simultaneously local and global spatial externalities, where W f
n and W

g
n
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are, respectively, the local and global spatial weights matrices. Loosely speaking, local

spatial externality means that spatial dependence is limited to among the “neighbors”,

whereas the global spatial externalities means that the spatial dependence exists among

the spatial units that may be “far” away from each other. Spatial externalities may

exist in the modeled effects (the regressors) as well as in the unmodelled effects (the

errors). To give a maximum generality, I consider both local and global externalities

in both modelled as well as unmodeled effects.2 Generically, let A(W f
1n,W

g
1n, ρ) be an

n× n matrix function of the n× n spatial weights matrices W f
1n and W

g
1n, indexed by a

k1 × 1 spatial parameter vector ρ, and B(W f
2n,W

g
2n, γ) be an n × n matrix function of

the n× n spatial weights matrices W f
2n and W

g
2n, indexed by a k2 × 1 spatial parameter

vector γ. The proposed model takes the following general form:

Yn = A(W
f
1n,W

g
1n, ρ)Xnβ +B(W

f
2n,W

g
2n, γ)un (1)

where the matrices A(W f
1n,W

g
1n, ρ) ≡ An(ρ) and B(W f

2n,W
g
2n, γ) ≡ Bn(γ) capture, re-

spectively, the spatial externalities in the covariates Xn and in the error vector un, β is

a p × 1 vector of model parameters, and un is a vector of independent and identically
distributed (iid) errors of mean zero and variance σ2. All W matrices are normalized to

have unity row sums. Clearly, it must be that An(0) = In and Bn(0) = In, i.e., ρ = 0 or

γ = 0 or both indicates the lack of spatial externality in Xn or in un or in both.

The model given in (1) is very general, covering most of the models available in

the literature. From the above discussions, we see that the local spatial externality

corresponds to a spatial moving average (SMA) process, the global spatial externality

corresponds to a spatial autoregressive (SAR) process, and the local and global spatial

externalities together correspond to a spatial autoregressive moving average (SARMA)

process.3 Most of the models appeared in the literature apply one or more of the these

2Spatial effects in Yn can be converted to the spatial effects in Xn and error terms, see Anselin(2003).
3This term is originated from Huang (1984), with the original meaning being a SAR(p) for the

response together with a SMA(q) for the error. However, we see no reason why we can not apply a

SAR(p) and a SMA(q) to the same variable to produce a SARMA(p, q) error, or a SARMA(p, q) re-

sponse, or SARMA(p, q) regressors. See also Bera and Anselin (1998) and Anselin (2003) for discussions

on SARMA processes.
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processes (first order or higher)4 to one or more of the model components: the response,

the regressors, and the disturbance. These can all be reduced to the form specified in

Model (1) defined above, with certain constrains (when necessary) being put on ρ and

γ, and on the weights matrices. For example, in their popular forms, we have,

• Yn = Xnβ+εn, with εn = γWnεn+un. This is a model with a SAR(1) error or global externality

on un, which can be written in the form of (1) with An(ρ) = In and Bn(γ) = (In−γWn)
−1 (see,

e.g., Anselin and Bera, 1998; Benirschka and Binkley, 1994; Kelejian and Prucha, 1999);

• Yn = Xnβ+εn, with εn = γWnun+un, a model with a SMA(1) error or local externality on un.

In the form of (1), An(ρ) = In and Bn(γ) = (In + γWn) (see, e.g., Cliff and Ord 1981; Haining

1990; Anselin and Bera 1998).

• Yn = ρWnYn+Xnβ+un, a model with only a SAR(1) on Yn, which can be translated into a model

with global externality in both Xn and un, with An(ρ) = (In− ρWn)
−1, Bn(γ) = (In− γWn)

−1,

and ρ = γ (see, e.g., Anselin 1988; Case et al. 1993; Besley and Case 1995; Lee 2002, 2004a);

• Yn = Xnβ + ρW1nXnβ + εn with εn = γWnεn + un. This is a model with a SMA(1) on Xn and

a SAR(1) on un, called the hybrid model by Anselin (2003). For this model, An(ρ) = In + ρWn

and Bn(γ) = (In−γWn)
−1. It has not been formally studied so far. Alternatively, one can apply

SAR(1) on Xn and SMA(1) on un;

• Yn = ρW1nYn + Xnβ + εn with εn = γW2nεn + un, a model with SAR(1) on both Yn and εn

(see Anselin 1988, p. 60-65). It has been applied by, among others, Case (1991, 1992), Case et

al. (1993), and Besley and Case (1995). It is called the spatial ARAR(1,1) model by Kelejian

and Prucha (1998, 2001, 2006), who studied generalized spatial 2SLS procedure, asymptotic

distribution of Moran I test, and GM estimation of the model with heteroscedastic errors. Using

our notation, we have An(ρ) = (In − ρW1n)
−1 and Bn(γ) = (In − γ1W

g
2n)
−1(In − γ2W2n)

−1,

with γ1 = ρ, γ2 = γ, W g
2n =W1n, and W2n =W2n.

• Yn = Xnβ+εn with εn = γ1W
g
nεn+γ2Wnun+un, a model with SARMA(1,1) (or joint local and

global spatial externalities) on errors. In this case, An(ρ) = In and Bn(γ) = (In−γ1W g
n)
−1(In+

γ2Wn);

• Yn = Znβ + εn, with Zn = ρ1W
g
1nZn + ρ2WnXn + Xn, and εn = γ1W

g
2nεn + γ2W2nun + un,

a model with a SARMA(1,1) on un and a SARMA(1,1) on Xn. In this case, An(ρ) = (In −
ρ1W

g
1n)
−1(In + ρ2W1n) and Bn(γ) = (In − γ1W g

2n)
−1(In + γ2W2n).

4Higher-order spatial lag operators are defined by applying the spatial weights matrix to a lower-

order lagged variable, e.g., a second-order spatial lag in Yn is obtained asWn(WnYn) =W
2
nYn. However,

higher-order spatial operators yield redundant and circular neighbor relations, which must be eliminated

to ensure proper estimation and inference (Anselin and Bera, 1998, p. 247).
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Clearly, the model can be more complicated than any of them listed above. For

example, one may use (In+ γ1Wn + γ2W
2
n + γ3W

3
n) to generate local effects that extend

to several layers of neighbors. Also, the general specification given in (1) can be easily

extended to include covariates that are not associated with any spatial effects, and to

add heteroscedasticity structure onto the model.

2.2 Model estimation

I now outline the quasi-maximum likelihood estimation (QMLE) procedure based on

Gaussian likelihood. Let Ωn(γ) = Bn(γ)B
I
n(γ). Let θ = (ρI, γI)I, and ξ = (βI, θI,σ2)I.

The quasi-loglikelihood, using normal distribution as an approximation to the error

distribution, has the form

fn(ξ) = −n
2
ln(2πσ2)− 1

2
ln |Ωn(γ)|− 1

2σ2
εn(β, ρ)

IΩ−1n (γ)εn(β, ρ) (2)

where εn(β, ρ) = Yn −An(ρ)Xnβ. Given θ, the constrained QMLEs of β0 and σ20 are

β̂n(θ) = [Xn(ρ)
IΩ−1n (γ)Xn(ρ)]

−1Xn(ρ)Ω−1n (γ)Yn (3)

σ̂2n(θ) =
1

n
[Yn −Xn(ρ)β̂n(θ)]IΩ−1n (γ)[Yn −Xn(ρ)β̂n(θ)], (4)

where Xn(ρ) = An(ρ)Xn.

Substituting β̂n(θ) and σ̂
2
n(θ) back into (2) for β and σ

2, we obtain the concentrated

quasi-loglikelihood function for θ.

fcn(θ) = −
n

2
[1 + ln(2π)]− 1

2
ln |Ωn(γ)|− n

2
ln[σ̂2n(θ)]. (5)

Maximizing fcn(θ) gives the QMLE θ̂n of θ, which in turn gives the QMLEs of β and σ
2

as β̂n = β̂n(θ̂n) and σ̂2n = σ̂2n(θ̂n). Maximization of f
c
n(θ) can be conveniently realized

using GAUSS CO procedure (see the footnote to Assumption I in Section 3 for the issue

of parameter space). In cases where computing speed is an issue, one may consider

providing the analytical gradient

∂fcn(θ)

∂ρi
=

[Xn,ρi(ρ)β̂n(θ)]
IΩ−1n (γ)εn(β̂n(θ), ρ)

εIn(β̂n(θ), ρ)Ω−1n (γ)εn(β̂n(θ), ρ)/n
, (6)

∂fcn(θ)

∂γj
=

εIn(β̂n(θ), ρ)Ω
−1
n (γ)Ωn,γj(γ)Ω

−1
n (γ)εn(β̂n(θ), ρ)

2εIn(β̂n(θ), ρ)Ω−1n (γ)εn(β̂n(θ), ρ)/n
− 1
2
tr[Ω−1n (γ)Ωn,γj(γ)], (7)
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where i = 1, · · · , k1, j = 1, · · · , k2, Xn,ρi(ρ) = ∂
∂ρi
Xn(ρ) and Ωn,γj(γ) =

∂
∂γj
Ωn(γ). For

large data, repeated calculation of |Ωn(γ)| as required in the process of maximizing
fcn(θ) can be a burden. However, often the special form of the Ωn(γ) matrix allows

for a considerable amount of simplifications. For example, in a model with a spatial

AR error, Bn(γ) = (In − γW2n)
−1. Thus Ωn(γ) = [(In − γW I2n)(In − γW2n)]

−1 and

|Ωn(γ)| = �ni=1(1 − γwi)
−2, where wi are the eigenvalues of W2n. As W2n is a fixed

matrix, its eigenvalues only need to be calculated once and be used subsequently.5

2.3 Covariance estimation

The previous subsection describes a simple procedure for model estimation. Formal

statistical analysis needs the standard errors of the parameter estimates, or more gener-

ally the variance-covariance estimate of the QMLE to facilitate more advanced statistical

inferences such as confidence interval construction for quantiles. To provide a simple ex-

pression for such a covariance estimate, some notation and conventions are necessary,

and these notation and conventions will be followed through the rest of the article.

Notation and conventions. Let ξ0 (and accordingly β0, θ0, ρ0, γ0 and σ
2
0) represent

the true parameter values. Let Gn(ξ) =
∂
∂ξ
fn(ξ) be the gradient vector and Hn(ξ) =

∂
∂ξ
Gn(ξ) be the Hessian matrix with their detailed expressions given in Appendix A.

Let Kn(ξ0) = Var[Gn(ξ0)] and In(ξ0) = −E[Hn(ξ0)], with the expectation and variance
operators ‘E’ and ‘Var’ corresponding to the true parameters. Specifically, E(Yn) =

An(ρ0)Xnβ0 and Var(Yn) = σ20Ω(γ0). For a vector vn and a matrix Mn, vn,i is the ith

element of vn, mn,ij is the ijth element ofMn, ,vn, is the Euclidean norm of vn, tr(Mn)

is the trace of Mn, diagv(Mn) is a column vector formed by the diagonal elements of

Mn, |Mn| is the determinant, M In is the transpose, and M−1n is the inverse of Mn. The

partial derivatives of the matrix function An(ρ) with respect to the ith element of ρ is

denoted as An,ρi(ρ). Similar notation is used for the partial derivatives of Bn(γ), Xn(ρ)

5Accuracy issue may arise when n is large (Kelejian and Prucha, 1998), and in this case sparce

matrix technique should be employed (LeSage, 1999). See Griffith, 1988; Anselin, 1988; Magnus, 1982;

and Magnus and Neudecker, 1999, for more on matrix calculations.
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and Ωn(γ). Let 1n be the n× 1 vector of ones. Define

Z1n(θ) = B−1n (γ)Xn(ρ),

Z2n(θ) =
+
B−1n (γ)Xn,ρi(ρ)β, i = 1, · · · , k1

�
n×k1

,

Φn(γ) =
+
diagv

p
Ω∗n,γi(γ)

Q
, i = 1, · · · , k2

�
n×k2

,

Λn(γ) =
+
tr
p
Ω∗n,γi(γ)Ω

∗
n,γj
(γ)
Q
, i, j = 1, · · · , k2

�
k2×k2

,

where Ω∗n,γi(γ) = B−1n (γ)Ωn,γi(γ)B
I−1
n (γ), i = 1, · · · , k2. When a function is evaluated

at ξ0, the bracketed part will be suppressed, e.g., Z1n = Z1n(θ0), Φn = Φn(γ0). Put

Zn = {Z1n, Z2n}. Let α0 and κ0 + 3 be, respectively, the skewness and kurtosis of un,i.
Using the above notation, the asymptotic variance (AVar) of the QMLE ξ̂n is

AVar(ξ̂n) = I
−1
n (ξ0)Kn(ξ0)I

−1
n (ξ0),

with the expected information matrix and the variance of the gradient being, respec-

tively,

In(ξ0) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1
σ20
Z InZn, 0, 0

∼, 1
2
Λn,

1
2σ20
ΦIn1n

∼, ∼, n
2σ40

⎞⎟⎟⎟⎟⎟⎟⎟⎠ , (8)

and

Kn(ξ0) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1
σ20
Z InZn,

α0
2σ0
Z InΦn,

α0
2σ30
Z In1n

∼, κ0
4
ΦInΦn +

1
2
Λn,

κ0+2
4σ20

ΦIn1n

∼, ∼, n(κ0+2)
4σ40

⎞⎟⎟⎟⎟⎟⎟⎟⎠ . (9)

Note that when the errors are exactly normal, α0 = κ0 = 0, thus Kn(ξ0) = In(ξ0),

and AVar(ξ̂n) = I
−1
n (ξ0). The detailed derivations for Kn(ξ0) and In(ξ0) are given in the

Appendix A. With these explicit expressions, we obtain an estimate of Var(ξ̂n) as:

�Var(ξ̂n) = I−1n (ξ̂n)Kn(ξ̂n)I
−1
n (ξ̂n),

Note that in the above variance estimate, α0 is estimated by the sample skewness of

B−1n (γ̂)εn(β̂n, ρ̂n), and κ0 + 3 is estimated by the sample kurtosis of B
−1
n (γ̂)εn(β̂n, ρ̂n).
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Clearly, use of QMLE standard error makes the inferences robust against the excess

skewness and kurtosis of the data. When the focus of statistical inference is on the

regular regression parameters β as is the case for the empirical applications, a simple

inferential statistic is presented in Section 4.

3 Large Sample Properties

In this section, I consider the problems of parameter identifiability, and consistency

and asymptotic normality of the QMLEs. These asymptotic theories are essential for

statistical inferences for the regression coefficients, and for testing the local and global

spatial effects. Let Θ1 be the parameter space containing the values of ρ, Θ2 be the

space of γ values, and Θ = Θ1 × Θ2 be the product space containing the values of

θ. The following is a set of regularity conditions that are sufficient for the parameter

identifiability and consistency of the QMLEs.

Assumption 1. The space Θ is compact with θ0 being an interior point of it.
6

Assumption 2. {un,i} are iid with mean zero, variance σ20, and finite moment

E(|un,i|4+6) for 6 > 0.
Assumption 3. The elements of Xn are uniformly bounded, and limn→∞ 1

n
[Z I1n(θ)Z1n(θ)]

exists and is nonsingular, uniformly in θ ∈ Θ.
Assumption 4. The sequences of matrices An(ρ) and A

−1
n (ρ) are uniformly bounded

in both absolute row or column sums, uniformly in ρ ∈ Θ1.
Assumption 5. The sequences of matrices Bn(γ) and B

−1
n (γ) are uniformly bounded

in both absolute row and column sums, uniformly in γ ∈ Θ2,
Assumption 6. Z1n(θ) and Z2n(θ) are not asymptotically multicolinear, uniformly

in θ ∈ Θ; and limn→∞ 1
n
[Z I2n(θ)Z2n(θ)] exists and is nonsingular, uniformly in θ ∈ Θ.

6Kelejian and Prucha (2006) address an important issue on parameter space when spatial weights

matrices are not row-normalized, leading to a practical definition of the parameter space that is typically

n-dependent.
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Assumption 7. The elements of An,ρi(ρ), i = 1, · · · , k1, are uniformly bounded,
uniformly in ρ ∈ Θ1; and the elements of Bn,γj(γ), j = 1, · · · , k2, are uniformly bounded,
uniformly in γ ∈ Θ2.

Assumptions 1-3 are standard assumptions that provide essential features on the

parameter space, the disturbances and the design matrix. Assumption 2 sets up the

basic requirements for the error vector un so that the central limit theorems for linear-

quadratic forms of Kelejian and Prucha (2001) can be applied. Assumptions 4 and 5

are essential requirements for keeping the spatial dependence to within a manageable

degree (see Lee, 2004). Assumption 6 ensures that the additional regressors generated

by the spatial externalities in the modelled effect are not asymptotically multicolinear

with the regular regressors, and are not asymptotically multicolinear among themselves.

Assumption 7 ensures that the two spatial-matrix functions are smooth enough.

3.1 Parameter identifiability and consistency of the QMLE

Define f̃n(ξ) = Efn(ξ), where the expectation operator corresponds to the true pa-

rameter vector ξ0. This expected loglikelihood is the key function for proving the

parameter identifiability and consistency of the QMLEs. It is easy to show that

f̃n(ξ) = −n
2
ln(πσ2)− 1

2
ln |Ωn(γ)|− σ20

2σ2
tr[Ωn(γ0)Ω

−1
n (γ)],

− 1

2σ2
[Xn(ρ)β −Xn(ρ0)β0]IΩ−1n (γ)[Xn(ρ)β −Xn(ρ0)β0]. (10)

Note that f̃n(ξ) is strictly concave in β and σ2. Thus, for a given θ, it can be shown

that f̃n(ξ) is partially maximized at

β̃n(θ) = [X In(ρ)Ω
−1
n (γ)Xn(ρ)]

−1X In(ρ)Ω
−1
n (γ)Xn(ρ0)β0, (11)

σ̃2n(θ) =
σ20
n
tr[Ωn(γ0)Ω

−1
n (γ)] +

1

n
βI0X

I
n(ρ0)B

I−1
n (γ)M1n(θ)B

−1
n (γ)Xn(ρ0)β0, (12)

where M1n(θ) = In − Z1n(θ)[Z1n(θ)Z I1n(θ)]−1Z I1n(θ), resulting in a concentrated ex-
pected loglikelihood

f̃cn(θ) = −
n

2
[1 + ln(2π)]− 1

2
ln |Ωn(γ)|− n

2
ln[σ̃2n(θ)]. (13)
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The parameter identifiability is based on the (asymptotic) behavior of f̃cn(θ) and the

consistency of ξ̂n is based on the (asymptotic) behavior of the difference f
c
n(θ)− f̃cn(θ).

Theorem 1. (Identifiability.) Under Assumptions 1—7, ξ0 is globally identifiable.

Proof: A sketch of the proof is given below. The details are supplemented in

Appendix B under Lemmas B.1 — B.3. Under Assumption 3, β0 and σ
2
0 are identifiable

once θ0 is identified. Thus, the problem of global identifiability of ξ0 reduces to the

problem of global identifiability of θ0. Following White (1996, Definition 3.3), one needs

to show that

lim sup
n→∞

^
max

θ∈N̄ (θ0)

1

n
f̃cn(θ)−

1

n
f̃cn(θ0)

�
< 0, (14)

where N̄6(θ0) is the compact complement of an open sphere in Θ centered at θ0 with

fixed radius 6 > 0.

Given in Appendix B, Lemma B.1 shows that 1
n
ln |Ω(γ)| is uniformly equicontinuous

on Θ2, Lemma B.2 shows that σ̃
2
n(θ) is uniformly equicontinuous on Θ, and Lemma B.3

proves that σ̃2n(θ) is uniformly bounded away from zero on Θ. Thus,
1
n
f̃cn(θ) is uniformly

equicontinuous on Θ.

Now, using the auxiliary quantities f̃cn,a(θ) and σ̃
2
n,a(γ) defined in the proof for Lemma

B.3, we have, f̃cn(θ) = f̃cn,a(θ)− n
2
[ln σ̃2n(θ)− ln σ̃2n,a(γ)], f̃cn(θ0) = f̃cn,a(γ0), and

1

n
f̃cn(θ)−

1

n
f̃cn(θ0) =

1

n
[f̃cn,a(γ)− f̃cn,a(γ0)]−

1

2
[ln σ̃2n(θ)− ln σ̃2n,a(γ)].

From the proof of Lemma B.3, we have concluded that 1
n
[f̃cn,a(γ)− f̃cn,a(γ0)] ≤ 0, and that

σ̃2n,a(γ) is bounded away from zero uniformly on Θ2. From (12), σ̃2n,a(γ) ≤ σ̃2n(θ), and

thus 1
n
f̃cn(θ)− 1

n
f̃cn(θ0) ≤ 0. If the global identifiability condition were not satisfied, there

would exist a sequence θn ∈ N̄6(θ0) that would converge to θ+ = {ρI+, γI+}I W= θ0 such that

limn→∞[ 1n f̃
c
n(θn)− 1

n
f̃cn(θ0)] = 0. As

1
n
f̃cn(θ) is uniformly equicontinuous on Θ, this would

be possible only if limn→∞ 1
n
[f̃cn,a(γ+)− f̃cn,a(γ0)] = 0 and limn→∞[σ̃2n(θ+)− σ̃2n,a(γ+)] = 0.

The latter requirement is a contradiction to Assumption 6, which guarantees that ∀ θ ∈
N̄6(θ0),

1
n
β I0X

I
n(ρ0)B

I−1
n (γ)M1n(θ)B

−1
n (γ)Xn(ρ0)β0 > 0. Therefore, θ0 and hence ξ0 must

be globally identifiable.
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Theorem 2. (Consistency.) Under Assumptions 1—7, we have, ξ̂n
p−→ ξ0.

Proof: Following the global identifiability proved in Theorem 1, it suffices to show

that 1
n
[fcn(θ) − f̃cn(θ)]

p−→ 0, uniformly in θ ∈ Θ (White, 1996, Theorem 3.4). From (5)

and (13), we have 1
n
[fcn(θ) − f̃cn(θ)] = −1

2
[ln σ̂2n(θ) − ln σ̃2n(θ)]. By a Taylor expansion of

ln σ̂2n(θ) at σ̃
2
n(θ), we obtain | ln σ̂2n(θ) − ln σ̃2n(θ)| = |σ̂2n(θ) − σ̃2n(θ)|/σ̄2n(θ), where σ̄2n(θ)

lies between σ̂2n(θ) and σ̃
2
n(θ). As σ̃

2
n(θ) is uniformly bounded away from zero on Θ2 from

Lemma B.3, it follows that σ̄2n(θ) will be bounded away from zero uniformly on Θ2 in

probability. So, the problem reduces to proving that σ̂2n(θ)− σ̃2n(θ)
p−→ 0, uniformly in

θ ∈ Θ, which is given in Lemma B.4 in Appendix B.

3.2 Asymptotic normality of the QMLE

Some additional regularity assumptions are necessary for the asymptotic normality

of the QMLEs to hold. These are essentially the conditions to ensure the existence of the

inverse of the expected information matrix, and the smoothness of the Hessian matrix

in a small neighborhood of θ0.

Assumption 8. limn→∞ 1
n
Λn exists and is nonsingular.

Assumption 9. ∂
∂γi
Ω−1n (γ) is uniformly bounded in row and column sums, uniformly

in a neighborhood of γ0.

Assumption 10. The elements of An,ρiρj (ρ) and their derivatives are uniformly

bounded, uniformly in a neighborhood of ρ0; the elements of Bn,γiγj (γ) and their deriva-

tives are uniformly bounded, uniformly in a neighborhood of γ0.

Theorem 3. (Asymptotic Normality.) Under Assumptions 1-10, we have

√
n(ξ̂n − ξ0)

D−→ N
�
0, I−1(ξ0)K(ξ0)I−1(ξ0)

=
where I(ξ0) = limn→∞ 1

n
In(ξ0) and K(ξ0) = limn→∞ 1

n
Kn(ξ0).

Proof: An outline is given here and the detail is given in Appendix B under Lemmas

B.5 and B.6. A Taylor series expansion of Gn(ξ̂n) = 0 at ξ0 gives

√
n(ξ̂n − ξ0) = −

w
1

n
Hn(ξ̄n)

W−1 1√
n
Gn(ξ0),

12



where ξ̄n lies between ξ̂n and ξ0. As ξ̂n
p−→ ξ0, ξ̄n

p−→ ξ0. The expressions for the

gradient Gn(ξ) and Hessian Hn(ξ) are given in Appendix A.

From Appendix A, we have the elements ofGn(ξ0):
1
σ2
Z Inun,

1
2σ20
uInΩ

∗
n,γi
un−1

2
tr(Ω∗n,γi),

i = 1, · · · , k2, and 1
2σ40
uInun − n

2σ20
. These are either linear or quadratic forms of un with

iid elements. Thus, the central limit theorems for linear and linear-quadratic forms of

Kelejian and Prucha (2001) can be used to prove that

1√
n
Gn(ξ0)

D−→ N [0, K(ξ0)],

where K(ξ0) = limn→∞ 1
n
Kn(ξ0).

Lemma B.5 shows that 1
n
[Hn(ξ̄n) − Hn(ξ0)] = op(1), and Lemma B.6 shows that

1
n
[Hn(ξ0) + In(ξ0)] = op(1). Finally, Assumptions 6 and 8 guarantee the existence of

I−1n (ξ0). The result of the theorem follows.

4 Tests for Spatial Externalities

With the variance estimate and the large sample properties given in the previous two

sections, one can carry out various types of inferences, concerning the regression coeffi-

cients β0, the spatial parameters ρ0 related to regressors, and the spatial parameters γ0

related to errors. However, one is often interested in testing the existence/nonexistence

of the spatial effects in the model, i.e., testing for ρ0 or γ0 = 0, or both. The special

structure of the In(ξ0) and Kn(ξ0) matrices given in Section 2.3 allow great deal simpli-

fications, resulting in simple analytical forms of inferential statistics for β0, ρ0, γ0 and

θ0, respectively. In particular, we have the asymptotic variances,

AVar(β̂n) = σ20(Z
I
1nM2nZ1n)

−1 (15)

AVar(ρ̂n) = σ20(Z
I
2nM1nZ2n)

−1 (16)

AVar(γ̂n) = 2Σ−1n + κ0Π
I
nΠn, (17)

where M1n = In − Z1n(Z I1nZ1n)−1Z I1n, M2n = In − Z2n(Z I2nZ2n)−1Z I2n, Σn = Λn −
1
n
ΦIn1n1

I
nΦn, Πn = ΦnΣ

−1
n − τ−1n 1n1

I
nΦnΛ

−1
n , and τn = n − 1InΦnΛ−1n ΦIn1n. Further, it

13



should be interesting to conduct joint inferences for ρ0 and γ0. To do this, the asymp-

totic covariance (ACov) between ρ̂n and γ̂n is needed. We obtain, after some algebra,

ACov(ρ̂n, γ̂n) = α0σ0(Z
I
2nM1nZ2n)

−1Z I2nM1nΠn, (18)

Thus, the expressions given in (16)-(18) together give the asymptotic variance for θ̂n =

(ρ̂n, γ̂n)
I, which can be used for joint inferences for ρ0 and γ0. The detailed derivations

for (15)-(18) are given in Appendix A.

The results of (15)-(18) are interesting. They show that estimating γ0 and σ0 has no

impact asymptotically on the inferences for β0 and ρ0. In other words, whether γ0 and

σ0 are known or estimated does not change the expressions for Avar(β̂n) and Avar(ρ̂n).

Similarly, estimating β0 and ρ0 has no impact asymptotically on the inferences for γ0

and σ0. When κ0 = 0, i.e., the kurtosis of the error distribution is the same as that of

a normal distribution, AVar(γ̂) = 2Σ−1n , which is the same as when errors are exactly

normal. When α0 = 0, i.e., the error distribution is symmetric, ACov(ρ̂n, γ̂n) = 0, which

says that ρ̂n and γ̂n are asymptotically independent.

Inference can be jointly on a parameter vector, or individually on a contrast of the

parameter vector to see, e.g., whether the components of the parameter vector are the

same or not. Let c be a column vector representing generically a linear contrast of the

parameters involved in the inference. The statistics are presented below.

Inference for β0. Using (15) a simple Wald-type of inferential statistic, which

can easily be used for testing on or constructing confidence interval for cIβ0, takes the

following form

t1n(β0) =
cI(β̂n − β0)

σ̂n{cI(Ẑ I1nM̂2nẐ1n)−1c} 12
, (19)

where Ẑ1n = Z1n(θ̂n) and M̂2n = M2n(θ̂n). From the asymptotic results presented in

Section 3, we see that t1n(β0) follows asymptotically the standard normal distribution.

To conduct inference on β0 jointly, the statistic has the form

T1n(β0) = σ̂−2n (β̂n − β0)
IẐ I1nM̂2nẐ1n(β̂n − β0), (20)

which follows asymptotically a chi-squared distribution with p degrees of freedom. The
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statistics t1n(β0) and T1n(β0) allow the presence of the spatial effects in both the regres-

sors and the errors, locally and globally. However, only the estimation of the regressor-

related spatial parameters ρ0 has impact (through the presence of Z2n in the statistics)

on the asymptotic distributions of these statistics.

Inference for ρ0. Statistical inferences for the spatial effects in the regressors can

be carried out individually or jointly as well. The statistics are

t2n(ρ0) =
cI(ρ̂n − ρ0)

σ̂n{cI(Ẑ I2nM̂1nẐ2n)−1c} 12
, (21)

an asymptotic N(0, 1) random variate, where Ẑ2n = Z2n(θ̂n) and M̂1n =M1n(θ̂n), and

T2n(ρ0) = σ̂−2n (ρ̂n − ρ0)
IẐ I2nM̂1nẐ2n(ρ̂n − ρ0), (22)

an asymptotic chi-squared random variate with k1 degrees of freedom. The statistics

t2n(ρ0) and T2n(ρ0) account for the estimation of β0, γ0 and σ20. However, only the

estimation of β0 has impact (through the presence of Z1n) on the asymptotic distributions

of these statistics.

Inference for γ0. Again, when inferences concern the spatial effects in the errors,

they can be carried out individually or jointly. The statistics are

t3n(γ0) =
cI(γ̂n − γ0)

{cI(2Σ̂−1n + κ̂0Π̂InΠ̂n)c}
1
2

, (23)

which is asymptotically N(0, 1) distributed, and

T3n(γ0) = n(γ̂n − γ0)
I(2Σ̂−1n + κ̂0Π̂

I
nΠ̂n)

−1(γ̂n − γ0), (24)

which follows asymptotically a chi-squared distribution with k2 degrees of freedom. All

the estimated (hat) quantities are evaluated at the QMLE ξ̂n. The statistics t3n(γ0) and

T3n(γ0) account for the estimation of β0, ρ0, and σ
2
0. However, only the estimation of σ

2
0

has impact on the asymptotic distributions of these statistics.

Inference for ρ0 and γ0. Finally, it is of interest in seeing whether there are spatial

effects at all. In this case, one may use (16)-(18) to construct a statistic to test this
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overall spatial effect. The statistic takes the form

T4n(θ0) =
p
θ̂n − θ0

QI⎛⎜⎜⎝ σ̂2nΨ̂
−1
n , α̂0σ̂nΨ̂

−1
n Ẑ

I
2nM̂1nΠ̂n

∼, 2Σ̂−1n + κ̂0Π̂
I
nΠ̂n

⎞⎟⎟⎠
−1 p

θ̂n − θ0
Q
, (25)

where Ψ̂n = Ẑ
I
2nM̂1nẐ2n. The statistic T4n(θ0) follows an asymptotic chi-squared distri-

bution of k1+ k2 degrees of freedom. It is sometimes of interest to test a linear contrast

of θ0, e.g., ρ0 = γ0, to see whether a spatial lag model is appropriate or not. In this case,

a general test statistic is of the form

t4n(θ0) =
cI(θ̂n − θ0)+

σ̂2nc
I
1Ψ̂
−1
n c1 + 2α̂0σ̂nc

I
1Ψ̂
−1
n Ẑ

I
2nM̂1nΠ̂nc2 + cI2(2Σ̂−1n + κ̂0Π̂InΠ̂n)c2

�1/2 , (26)

where (cI1, c
I
2)
I = c. The statistic t4n(θ) follows asymptotically the N(0, 1) distribution.

We note that all the estimated (hat) quantities in the above test statistics are eval-

uated at the QMLE ξ̂n. The statistics given in (19)-(26) are all of Wald-type, and all

possess very simple analytical forms. Thus, they can easily be applied by the empirical

researchers. Their large sample behavior is governed by the asymptotic normality of the

QMLE. Of particular interest is the last one, which allows us to test the appropriateness

of the popular spatial lag model where a SAR(1) process is applied only to the responses.

In this case the null hypothesis is H0 : c
Iθ = 0 with cI = (1,−1) and θ = (ρ, γ)I. A re-

jection of H0 indicates that the spatial lag model is not appropriate. More importantly,

the statistics are robust against nonnormality of the errors. This is important as in real

empirical applications, there is often little indication a priori that the data are normal.

5 Finite Sample Properties

In this section, we investigate the finite sample properties of the regression estimates

(the estimates of the regression coefficients), and the finite sample properties of the tests

for spatial externalities, using Monte Carlo simulation. Two data generating processes

(DGP) are considered. One corresponds to a hybrid model with local spatial externality

in Xn and global spatial externality in the errors (Anselin, 2003), and the other is a
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generalized spatial lag model which reduces to the standard spatial lag model when

ρ0 = γ0 and W1n = W2n.

DGP1 : Yn = (In + ρ0W1n)Xnβ0 + (In − γ0W2n)
−1un,

DGP2 : Yn = ρ0W1nYn +Xnβ0 + (In − ρ0W1n)(In − γ0W2n)
−1un.

The errors un,i = σ0u
0
n,i, with {u0n,i, i = 1, · · · , n} being generated from (i) the stan-

dard normal distribution, (ii) a normal mixture, and (iii) a normal-gamma mixture. In

the cases (ii) and (iii), a 70%-30% mixing strategy is followed, i.e., 70% of the errors

are from the standard normal distribution, and the remaining 30% from either a normal

distribution with mean zero and standard deviation 2, or an exponential distribution

with mean one. The mixture distributions are standardized to have mean zero and vari-

ance one to be conformable with the model assumptions. Their skewness and kurtosis

of un,i are (0, 4.57) for the normal mixture and (.6, 4.8) for the normal-gamma mixture,

compared with (0, 3) for the case of pure standard normal errors.

The spatial weighting matrices are generated according to Rook contiguity, by ran-

domly allocating the n spatial units on a lattice of k ×m (≥ n) squares. In our case, k
is chosen to be 5. The two spatial weight matrices in DGP1 and DGP2 can be the same

or different, which does not affect much on the simulation results.

I consider DGPs with two regressors X1 and X2, where X1 ∼ U(0, 10) and X2 ∼
N(0, 4). The regression coefficients and the error standard deviation are chosen to be

β0 = (5, 2, 2) and σ0 = 1. The spatial parameters ρ0 and γ0 vary from the set {-0.8, -0.5,
-0.2, 0.0, 0.2, 0.5, 0.8}. The sample size n varies from the set {50, 100, 200}. For finite
sample performance of the QMLEs, I report the Monte Carlo means and the root mean

squared errors (RMSE), and for the finite sample performance of the tests, I report the

empirical sizes at the 5% nominal level. Each set of Monte Carlo results (corresponding

to a combination of values of n, ρ and γ) is based on 2000 samples.

Tables 1-3 present the Monte Carlo means and RMSEs for the parameter estimates

based on DGP1 corresponding to the cases of normal error, normal mixture, and normal-

gamma mixture, respectively. To save space, only a part of the results are reported. From

the tables we see that the QMLEs generally perform very well. The QMLEs of β, σ, and
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ρ are almost unbiased with small RMSEs. The QMLE of γ under estimates γ0 slightly

when γ0 > 0. The unreported results show that it may over estimates γ0 slightly when

γ0 < 0. The bias of γ̂n reduces when sample size increases. Also, the γ̂n is more variable

than ρ̂n, and thus a much larger RMSE than that of ρ̂. These conclusions are quite

robust with respect to the error distributions as seen from the results of Tables 2 and 3.

One exception is that the RMSE of σ̂n is larger when errors are nonnormal than when

the errors are normal.

Tables 4-6 present the full Monte Carlo results for the sizes of the four tests introduced

in Section 4 based on DGP 1 with the three types of errors. From the results we see that

all the four tests have a reasonable finite sample performance. Although they over-reject

the null hypothesis when the sample size is not large (50, say), but improve quickly when

sample size n is increased from 50 to 100, and then to 200. A striking phenomenon is

that these tests are robust against nonnormality of the error distributions, as seen by

comparing the results in Tables 5 and 6 with those in Table 4.

The whole Monte Carlo experiment with DGP 1 is repeated using DGP2. One

difference is that under DGP2, we are interested in, besides the other things, seeing

whether ρ and γ are the same, i.e., testing whether a pure spatial lag model suffices for a

given data. Thus, T4n is replaced by t4n in the Monte Carlo experiment with c = (1,−1)I.
The Monte Carlo results are generally consistent with those based on DGP1. To save

space, we report only the empirical sizes in Tables 7-9, with full results available from

the author upon request. From the results we see that the four tests perform reasonably

well in finite samples. When n = 50, there could be a large size distortion depending

on the values of ρ and γ, in particular T1n, the test for the regression coefficients β.

The size distortion worsens when the errors are nonnormal, from the comparison of the

results in Table 7 with the results in Tables 8 and 9. However, when n increases, the

sizes quickly converge to their normal level. The test of particular interest in this case,

t4n, performs reasonably well with empirical sizes very close to their normal level when

n reaches 200. The results given in Tables 8 and 9 show that these tests are robust

against nonnormality. A special note is that when ρ = γ in Tables 7-9, the empirical
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sizes correspond to the test for a pure spatial lag model.

6 Conclusions and Discussions

A general model jointly incorporating the local and global spatial externalities in both

modelled and unmodelled effects is introduced. Robust methods of inferences procedures

are developed based on quasi-maximum likelihood estimation method. Simple analytical

forms for the inferential statistics are provided. Large sample properties of the QMLE

are studied. Extensive Monte Carlo simulation shows that the QMLEs of the model

parameters and the tests possess good finite sample properties. The proposed model is

very flexible. The methods of inferences are easy to implement and the tests of spatial

externalities can be easily carried out.

The model can be extended to include regressors of no spatial dependence, and

to allow un to be heteroscedastic. Furthermore, the QMLE is efficient only when the

likelihood is correctly specified. In the absence of knowledge about the error distribution,

it may be possible to extend the adaptive estimation procedure of Robinson (2006) to

improve the efficiency of the QMLEs considered in this paper.
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Appendix A: Gradient, Hessian and Related Quantities

The gradient function Gn(ξ) =
∂
∂ξ
f(ξ) has the elements:

Gnβ(ξ) = 1
σ2
X In(ρ)Ω

−1
n (γ)εn(β, ρ),

Gnρi(ξ) = 1
σ2
[Xn,ρi(ρ)β]

IΩ−1n (γ)εn(β, ρ), i = 1, · · · , k1,
Gnγi(ξ) = 1

2σ2
εIn(β, ρ)Ω

−1
n (γ)Ωnγi(γ)Ω

−1
n (γ)εn(β, ρ)− 1

2
tr[Ω−1n (γ)Ωn,γi(γ)],

i = 1, · · · , k2,
Gnσ2(ξ) = 1

2σ4
εInΩ

−1
n (γ)εn(β, ρ)− n

2σ2
.

Note that in the above derivation, we have used the formulas: ∂
∂γ
ln |Ωn| = tr(Ω−1n ∂Ωn

∂γ
)

and ∂
∂γ
Ω−1n = −Ω−1n ∂Ωn

∂γ
Ω−1n .

To derive the expression for Kn(ξ0), the variance of Gn(ξ0), recall the notation Zn

and Ω∗n,γi defined in Section 2.3, and use the relations Ωn = BnB
I
n and εn(β0, ρ0) = Bnun.

The gradient function at ξ0 can be written as

Gn(ξ0) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1
σ20
Z Inun,

1
2σ20
uInΩ

∗
n,γi
un − 1

2
tr(Ω∗n,γi), i = 1, · · · , k1,

1
2σ40
uInun − n

2σ20
.

As the elements of un are iid with mean zero, variance one, skewness α0, and kurtosis

κ0 + 3, the following formulas for conformable matrices Z, Φ1 and Φ2 can easily be

established,

E[(Z Iun) · (Z Iun)I] = σ20Z
IZ,

E[un · (uInΦiun)] = σ30α0 daigv(Φi), i = 1, 2,

Cov(uInΦiun, u
I
nΦjun) = σ40κ0 diagv(Φi)

I diagv(Φj) + σ40tr(ΦiΦj + ΦiΦ
I
j),

for i, j = 1, 2, some simple algebra leads to the expression for Kn(ξ0).

Let Xn,ρiρj(ρ) =
∂2

∂ρi∂ρj
Xn(ρ), and Ωn,γiγj (γ) =

∂2

∂γi∂γj
Ωn(γ). The Hessian matrix

function Hn(ξ) =
∂
∂ξ
Gn(ξ) has the elements,
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Hnββ(ξ) = − 1
σ2
X In(ρ)Ω

−1
n (γ)Xn(ρ)

Hnβρi(ξ) = 1
σ2
X In,ρi(ρ)Ω

−1
n (γ)εn(β, ρ)− 1

σ2
X In(ρ)Ω

−1
n (γ)Xn,ρi(ρ)β

Hnβγi(ξ) = − 1
σ2
X In(ρ)Ω

−1
n (γ)Ωn,γi(γ)Ω

−1
n (γ)εn(β, ρ)

Hnβσ2(ξ) = − 1
σ4
X In(ρ)Ω

−1
n (γ)εn(β, ρ)

Hnρiρj(ξ) = 1
σ2
[Xn,ρiρj (ρ)β]

IΩ−1n (γ)εn(β, ρ)− 1
σ2
[Xn,ρi(ρ)β]

IΩ−1n (γ)Xn,ρj(ρ)β

Hnρiγj (ξ) = − 1
σ2
[Xn,ρi(ρ)β]

IΩ−1n (γ)Ωn,γj (γ)Ω
−1
n (γ)εn(β, ρ)

Hnρiσ2(ξ) = − 1
σ4
[Xn,ρi(ρ)β]

IΩ−1n (γ)εn(β, ρ)

Hnγiγj(ξ) = 1
2
tr
�
Ω−1n (γ)Ωn,γj (γ)Ω

−1
n (γ)Ωnγi(γ)− Ω−1n (γ)Ωn,γiγj (γ)

=
− 1

2σ2
εn(β, ρ)

I

Ω−1n (γ)
�
2Ωn,γj(γ)Ω

−1
n (γ)Ωn,γi(γ)− Ωn,γiγj(γ)

=
Ω−1n (γ)εn(β, ρ)

Hnγiσ2(ξ) = − 1
2σ4

εn(β, ρ)
I [Ω−1n (γ)Ωn,γi(γ)Ω

−1
n (γ)] εn(β, ρ)

Hnσ2σ2(ξ) = n
2σ4
− 1

σ6
εn(β, ρ)

IΩ−1n (γ)εn(β, ρ).

The expected information matrix I(ξ0) = −E[H(ξ0)] has the elements,

In,ββ(ξ0) = 1
σ20
X In(ρ0)Ω

−1
n (γ)Xn(ρ0) =

1
σ20
Z I1nZ1n,

In,βρ(ξ0) = 1
σ20
{X In(ρ0)Ω−1n (γ0)Xn,ρi(ρ0)β0} = 1

σ20
Z I1nZ2n,

In,ρρ(ξ0) = 1
σ20

+
[Xn,ρi(ρ0)β0]

IΩ−1n (γ0)Xn,ρj (ρ0)β0
�
= 1

σ20
Z I2nZ2n,

In,γγ(ξ0) = 1
2

+
tr
�
Ω−1n (γ0)Ωn,γj(γ0)Ω

−1
n (γ0)Ωn,γi(γ0)

=�
= 1

2
Λn,

In,γσ2(ξ0) = 1
2σ20
tr [Ω−1n (γ0)Ωn,γi(γ0)] =

1
2σ20
ΦIn1n,

In,σ2σ2(ξ0) = n
2σ40
,

with the remaining elements being null vectors or matrices.

To derive AVar(β̂n), AVar(ρ̂n), AVar(γ̂n), and ACov(ρ̂n, γ̂n), given in (15)-(18), note

that Kn(ξ0) = In(ξ0) +K
0
n, where

K0
n =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
0, α0

2σ0
Z InΦn,

α0
2σ30
Z In1n

∼, κ0
4
ΦInΦn,

κ0
4σ20
ΦIn1n

∼, ∼, nκ0
4σ40

⎞⎟⎟⎟⎟⎟⎟⎟⎠ .
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Partition In(ξ0) and K
0
n according to (β

I
0, ρ
I
0)
I and (γI0, σ

2
0)
I, and denote the elements of

the partitioned In(ξ0) by I11, I12, I21 and I22, and the elements of the partitioned K
0
n by

K11, K12, K21 and K22. As I12 = 0, I21 = 0, and K11 = 0, we have

AVar(ξ̂n) = I−1n (ξ0)Kn(ξ0)I
−1
n (ξ0)

=

⎛⎜⎜⎝ I
−1
11 , 0

0, I−122

⎞⎟⎟⎠+
⎛⎜⎜⎝ 0, I−111 K12I

−1
22

I−122 K21I
−1
11 , I

−1
22 K22I

−1
22

⎞⎟⎟⎠
which leads immediately to AVar[(β̂In, ρ̂

I
n)
I] = I−111 = σ20(Z

I
nZn)

−1, and thus the expres-

sions AVar(β̂n) and AVar(ρ̂n) in (15) and (16).

To derive AVar(γ̂n) given in (17), one needs the upper-left corner submatrix of

I−122 K22I
−1
22 . We have,

I−122 = 2σ
2
0

⎛⎜⎜⎝ σ20Λn, ΦIn1n

1InΦn,
n
σ20

⎞⎟⎟⎠
−1

=

⎛⎜⎜⎝
1
σ20
Σ−1n , − 1

τn
Λ−1n Φ

I
n1n

− 1
τn
1InΦnΛ

−1
n ,

σ20
τn

⎞⎟⎟⎠ .
With

K22 =

⎛⎜⎜⎝
κ0
4
ΦInΦn,

κ0
4σ20
ΦIn1n

∼, nκ0
4σ40

⎞⎟⎟⎠ ,
some simple algebra leads to the expression for AVar(γ̂n).

Finally, to derive ACov(ρ̂n, γ̂n) given in (18), one needs the lower-left corner submatrix

of I−111 K12I
−1
22 . As I

−1
11 = σ20(Z

−1
n Zn)

−1 where Zn = {Z1n, Z2n}, we obtain,

I−111 = σ20

⎛⎜⎜⎝ (Z I1nM2nZ1n)
−1, (Z I1nZ1n)

−1Z I1nZ2n(Z
I
2nM1nZ2n)

−1

∼, (Z I2nM1nZ2n)
−1

⎞⎟⎟⎠
Now, K12 = (

α0
2σ0
Z InΦn,

α0
2σ30
Z In1n), which can be written as

K12 =
α0
2σ30

⎛⎜⎜⎝ σ20Z
I
1nΦn, Z

I
1n1n

σ20Z
I
2nΦn, Z

I
2n1n

⎞⎟⎟⎠ .
After matrix multiplications, some tedious algebra leads to the expression for ACov(ρ̂n, γ̂n).
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Appendix B: Detailed Proofs of the Theorems

This appendix presents six lemmas. Lemmas B.1 — B.3 fill in the details for the proof

of Theorem 1, Lemma B.4 gives additional details for proving Theorem 2, and Lemmas

B.5 and B.6 provide details for the proof of Theorem 3. To simplify the proofs of these

lemmas, assume without loss of generality that ρ and γ are both scalars.

Lemma B.1. Under the Assumption 5 and Assumption 7, 1
n
ln |Ω(γ)| is uniformly

equicontinuous in γ ∈ Θ2.

Proof: By the mean value theorem, we have

1

n
(ln |Ωn(γ1)|− ln |Ωn(γ2)|) = 1

n
tr
p
Ω−1n (γ̄)Ωnγ(γ̄)

Q
(γ1 − γ2),

where γ̄ lies between γ1 and γ2. As Ωn(γ) = Bn(γ)B
I
n(γ), Ωn,γ(γ) = Bn,γ(γ)B

I
n(γ) +

Bn(γ)B
I
n,γ(γ). As Bn(γ) is uniformly bounded in absolute row sums, uniformly in γ ∈ Θ2

(Assumption 5), and the elements of Bn,γ(γ) are uniformly bounded, uniformly in γ ∈ Θ2
(Assumption 7), it follows that the elements of Ωnγ(γ̄) are uniformly bounded, uniformly

in γ̄ ∈ Θ2. Further, as B−1n (γ) is uniformly bounded in absolute row and column

sums, uniformly in γ ∈ Θ2 (Assumption 5), Ω−1n (γ) = B−1n (γ)BI−1n (γ) is also uniformly

bounded in absolute row and column sums, uniformly in γ ∈ Θ2.
7 It follows that

1
n
tr [Ω−1n (γ̄)Ωnγ(γ̄)] = O(1). Thus,

1
n
ln |Ω(γ)| is uniformly equicontinuous in γ ∈ Θ2. As

Θ2 is a compact set,
1
n
[ln |Ωn(γ1)|− ln |Ωn(γ2)|] = O(1).

Lemma B.2. Under the Assumption 3—8, the σ̃2n(θ) defined in (12) is uniformly

equicontinuous in θ ∈ Θ.

Proof: By the mean value theorem:

σ̃2n(θ1)− σ̃2n(θ2) = σ̃2nρ(θ̄)(ρ1 − ρ2) + σ̃2nγ(θ̄)(γ1 − γ2),

where θ1 = (ρ1, γ1)
I, θ2 = (ρ2, γ2)I, and θ̄ lies between θ1 and θ2. The partial derivatives

7This follows from a property of the matrix norm as the maximum of the absolute row sums is a

matrix norm. See Horn and Johnson (1985).
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can be shown, after a lengthy algebra, to have the forms,

σ̃2nρ(θ) =
1

n
βI0X

I(ρ0)Dn(θ)X(ρ0)β0, and

σ̃2nγ(θ) = −σ
2
0

n
tr[Ωn(ρ0)Ω

−1
n (γ)Ωn,γ(γ)Ω

−1
n (γ)] +

1

n
βI0X

I(ρ0)Fn(θ)X(ρ0)β0

where Dn(θ) = −BI−1n (γ)[RIn(θ)M1n(θ) +M1n(θ)Rn(θ)]B
−1
n (γ),

Rn(θ) = B
−1
n (γ)An,ρ(ρ)A

−1
n (ρ)Bn(γ)[In −M1n(θ)],

Fn(θ) = −BI−1n (γ)M1n(θ)B
−1
n (γ)Ωn,γ(γ)B

I−1
n (γ)M1n(θ)B

−1
n (γ).

As the elements of Xn are uniformly bounded (Assumption 3) and the absolute row sums

of A(ρ) are uniformly bounded (Assumption 4), uniformly in ρ ∈ Θ1, the elements of
Xn(ρ) are uniformly bounded, uniformly in ρ ∈ Θ2. The matrices Bn(γ) and B−1n (γ) are
uniformly bounded in absolute row and column sums, uniformly in γ ∈ Θ2 (Assumption
5), so are the matrices Ωn(γ) and Ω

−1
n (γ). It follows that the elements of B

−1
n (γ)Xn(ρ)

are uniformly bounded, uniformly in θ ∈ Θ. This together with the Assumption 3 ensure
that the projection matrices M1n(θ) and In−M1n(θ) are uniformly bounded in absolute

row and column sums, uniformly in θ ∈ Θ.8 Thus, the matrices Dn(θ), Rn(θ), and

Fn(θ) are all uniformly bounded in their elements, uniformly in θ in Θ, which leads to

σ̃2nρ(θ) = O(1) and σ̃
2
nγ(θ) = O(1). Thus, σ̃

2
n(θ) is uniformly equicontinuous in θ in Θ.

As Θ is compact, it follows that σ̃2n(θ1)− σ̃2n(θ2) = O(1), uniformly in θ1 and θ2 in Θ.

Lemma B.3. Under the Assumption 3—7, the σ̃2n(θ) defined in (12) is uniformly

bounded away from zero on Θ.

Proof: To prove σ̃2n(θ) is uniformly bounded away from zero onΘ, and to finally show

the global identifiability of θ0, we employ a similar trick as did Lee (2004b, Appendix B).

Consider an auxiliary model Yn = Bn(γ)un, i.e., a pure spatial error process. We have the

loglikelihood function fn,a(γ, σ
2) = −n

2
ln(2πσ2)− 1

2
ln |Ωn(γ)|− 1

2σ2
Y InΩ

−1
n (γ)Yn, and its

expectation f̃n,a(γ,σ
2) = −n

2
ln(2πσ2) − 1

2
ln |Ωn(γ)| − σ20

2σ2
tr (Ωn(γ0)Ω

−1(γ)). The latter

is maximized at σ̃2n,a(γ) =
σ20
n
tr (Ωn(γ0)Ω

−1(γ)), resulting in the concentrated function

8See Lee (2004b, Appendix A) for the proof of a simpler version of this result.
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f̃cn,a(γ) = −n
2
[1 + ln(2π)]− 1

2
ln |Ωn(γ)|− n

2
ln σ̃2n,a(γ). We have σ̃

2
n,a(γ0) = σ20, and hence

f̃cn,a(γ0) = −n
2
[1 + ln(2π)] − 1

2
ln |Ωn(γ0)| − n

2
lnσ20. By Jensen’s inequality, f̃

c
n,a(γ) =

maxσ2 E[fn,a(γ,σ
2)] ≤ E[fn,a(γ0,σ20)] = −n2 ln(2πσ20) − 1

2
ln |Ωn(γ0)| − n

2
. It follows that

f̃cn,a(γ) ≤ f̃cn,a(γ0), showing that ln σ̃
2
n,a(γ) ≥ 1

n
[ln |Ωn(γ0)| + ln |Ωn(γ)|] − lnσ20. Lemma

B.1 shows that 1
n
[ln |Ωn(γ0)|+ln |Ωn(γ)|] = O(1), hence ln σ̃2n,a(γ) is bounded from below

uniformly in γ ∈ Θ2. Therefore, σ̃2n,a(γ) is bounded away from zero, uniformly in γ ∈ Θ2.
It follows from (12) that σ̃2n(θ) is also bounded away from zero, uniformly in θ in Θ.

Lemma B.4. Under Assumptions 1—7, σ̂2n(θ)− σ̃2n(θ)
p−→ 0, uniformly in θ ∈ Θ.

Proof: First, σ̂2n(θ) can be rewritten as σ̂
2
n(θ) =

1
n
Y InB

I−1
n (γ)M1n(θ)B

−1
n (γ)Yn. With

the true model Yn = Xn(ρ0)β0 +Bn(γ0)un, we have

σ̂2n(θ) =
1

n
βI0X

I
n(ρ0)B

I−1
n (γ)M1n(θ)B

−1
n (γ)Xn(ρ0)β0

+
1

n
uInB

I
n(γ0)B

I−1
n (γ)M1n(θ)B

−1
n (γ)Bn(γ0)un

+
2

n
βI0X

I
n(ρ0)B

I−1
n (γ)M1n(θ)B

−1
n (γ)Bn(γ0)un,

and referring to the expression for σ̃2n(θ) given in (12), we obtain,

σ̂2n(θ)− σ̃2n(θ) =
1

n
uInB

I
n(γ0)B

I−1
n (γ)M1n(θ)B

−1
n (γ)Bn(γ0)un −

σ20
n
tr[Ωn(γ0)Ω

−1
n (γ)]

+
2

n
βI0X

I
n(ρ0)B

I−1
n (γ)M1n(θ)B

−1
n (γ)Bn(γ0)un.

We show that the last term above is op(1), uniformly in θ ∈ Θ. Assumptions 3 and 4
guarantee that the elements of β I0Xn(ρ0) are uniformly bounded. As B

−1
n (γ) andM1n(θ)

are both uniformly bounded in absolute row and column sums, uniformly in γ ∈ Θ2, or
in θ ∈ Θ, the Assumption 1 and an extension of a result of Lee (2004a, Appendix A) to
the case of matrix functions lead to

2

n
β I0X

I
n(ρ0)B

I−1
n (γ)M1n(θ)B

−1
n (γ)Bn(γ0)un = op(1), uniformly in θ ∈ Θ.

Now we show that the difference of the first two terms is op(1). Since B
−1
n (γ)Bn(γ0) is

uniformly bounded in both absolute row and column sums, it follows from Assumption
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1 and an extended result of Lee (2004a, Appendix A) that

E{uInBIn(γ0)BI−1n (γ)M1n(θ)B
−1
n (γ)Bn(γ0)un}

= σ20tr[B
I(γ0)BI−1n (γ)M1n(θ)B

−1
n (γ)Bn(γ0)]

= σ20tr[B
I
n(γ0)B

I−1
n (γ)B−1n (γ)Bn(γ0)] +O(1)

= σ20tr[Ωn(γ0)Ω
−1
n (γ)] +O(1)

and that

Var{uInBIn(γ0)BI−1n (γ)M1n(θ)B
−1
n (γ)Bn(γ0)un}

= σ40κ0 diagv[Rn(θ)]
Idiagv[Rn(θ)] + 2σ40tr[R

2
n(θ)],

where Rn(θ) = B
I
n(γ0)B

I−1
n (γ)M1n(θ)B

−1
n (γ)Bn(γ0). Now, it is easy to show that Rn(θ)

is uniformly bounded in absolute row and column sums, uniformly in θ ∈ Θ. Hence,
by a matrix norm property, Rn(θ)Rn(θ) is also uniformly bounded in absolute row and

column sums, uniformly in θ ∈ Θ. It follows that the elements of R2n are uniformly
bounded, uniformly in θ ∈ Θ. Hence,

Var{uInBIn(γ0)BI−1n (γ)M1n(θ)B
−1
n (γ)Bn(γ0)un} = O(n),

uniformly in θ ∈ Θ. Finally, Chebyshev’s inequality leads to
1

n
uInB

I
n(γ0)B

I−1
n (γ)M1n(θ)B

−1
n (γ)Bn(γ0)un −

σ20
n
tr[Ωn(γ0)Ω

−1
n (γ)] = op(1),

which gives σ̂2n(θ)− σ̃2n(θ) = op(1) and hence the consistency of the QMLE ξ̂n of ξ0.

Lemma B.5. Under the Assumptions 1-10, we have 1
n
[Hn(ξ̄n)−Hn(ξ0)] = op(1).

Proof: As ξ̂n −→ ξ0, ξ̄n −→ ξ0. As Hn(ξ̄n) is either linear or quadratic in β̄n, and is

linear in σ̄−kn , k = 2, 4, or 6. As β̄n = β0 + op(1) and σ̄
−k
n = σ−k0 + op(1), we have,

1

n
Hn(ξ̄n) =

1

n
Hn(β0, θ̄n, σ

2
0) + op(1)

=
1

n
Hn(ξ0) +

1

n

∂

∂ρ̄n
Hn(β0, θ̃n,σ

2
0)(ρ̄n − ρ0) +

1

n

∂

∂γ̄n
Hn(β0, θ̃n, σ

2
0)(γ̄n − γ0) + op(1),

where θ̃n lies between θ̄n and θ0, and the second equation follows from the mean value

theorem. Under the Assumptions 9 and 10, it is easy to show that 1
n

∂
∂ρ̄n
Hn(β0, θ̃n,σ

2
0) =

Op(1) and
1
n

∂
∂γ̄n
Hn(β0, θ̃n,σ

2
0) = Op(1). The result of Lemma 5 thus follows.
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Lemma B.6. Under the Assumptions 1-10, we have 1
n
[Hn(ξ0) + In(ξ0)] = op(1).

Proof: From Appendix A, we have,

Hn(ξ0) + In(ξ0) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0, 1
σ20
(B−1n Xnρ)

Iun, − 1
σ20
Z I1nΩ

∗
nγun, − 1

σ40
Z I1nun

∼, 1
σ20
(B−1n X

I
nρρ)

Iun, − 1
σ20
Z I2nΩ

∗
nγun, − 1

σ40
Z I2nun

∼, ∼, q1(un) + q2(un), q3(un)

∼, ∼, ∼ q4(un)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
where q1(un) = tr(Ω

∗2
nγ) − 1

σ20
uInΩ

∗2
nγun, q2(un) =

1
2σ20
uInB

−1
n ΩnγγB

I−1
n un − 1

2
tr(Ω−1n Ωnγγ),

q3(un) =
1
σ20
tr(Ω∗nγ) − 1

σ40
uInΩ

∗
nγun, and q4(un) =

n
σ40
− 1

σ60
uInun. Thus, the elements of

Hn(ξ0) + In(ξ0) are either linear or quadratic forms of un, which can easily be shown to

be op(n) by applying the Chebyshev’s inequality. The result of Lemma 6 follows.
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Table 1. Mean and RMSE for the QMLEs, DGP1 with Normal Errors
n = 50, 100, and 200, for upper, middle and lower panels, respectively

MC Estimate of Mean MC Estimate of RMSE
ρ γ β0 β1 β2 σ ρ γ β0 β1 β2 σ ρ γ
.0 .0 5.000 2.000 2.000 .934 .001 -.041 .178 .048 .050 .121 .029 .199

.2 5.003 1.999 1.999 .944 -.001 .150 .206 .051 .050 .115 .029 .199

.5 5.015 1.998 2.000 .943 -.001 .433 .300 .052 .050 .118 .029 .181

.8 5.006 2.000 2.001 .958 -.001 .740 .755 .056 .052 .113 .030 .132
.2 .0 5.002 2.000 2.001 .936 .200 -.046 .155 .049 .048 .120 .030 .198

.2 4.998 2.000 1.999 .940 .200 .142 .171 .051 .048 .118 .028 .203

.5 4.999 1.998 2.001 .944 .200 .433 .254 .054 .052 .115 .028 .185

.8 5.002 2.002 2.002 .961 .199 .741 .639 .058 .053 .115 .027 .131
.5 .0 5.002 1.999 2.001 .936 .500 -.047 .133 .048 .047 .118 .032 .202

.2 5.004 1.999 2.000 .941 .500 .144 .143 .048 .049 .118 .028 .203

.5 5.006 1.999 2.000 .948 .499 .428 .199 .053 .053 .115 .026 .183

.8 4.991 2.001 2.001 .958 .501 .734 .529 .062 .056 .112 .026 .136
.8 .0 5.005 2.001 2.000 .938 .800 -.047 .114 .045 .046 .118 .034 .197

.2 4.998 2.000 2.000 .943 .800 .132 .121 .045 .048 .117 .030 .202

.5 5.002 2.003 2.001 .950 .800 .439 .174 .052 .051 .115 .026 .176

.8 4.992 2.001 2.000 .961 .799 .735 .416 .059 .056 .110 .024 .134
.0 .0 5.005 1.999 2.001 .972 .000 -.013 .185 .035 .036 .075 .025 .138

.2 4.999 2.000 2.002 .972 .000 .175 .203 .035 .036 .076 .026 .137

.5 5.004 2.000 1.999 .974 -.000 .476 .252 .036 .036 .076 .026 .116

.8 5.010 1.999 1.998 .979 -.002 .773 .519 .037 .038 .078 .028 .075
.2 .0 5.001 2.001 1.999 .970 .200 -.022 .151 .034 .035 .075 .025 .137

.2 5.003 1.999 2.000 .969 .200 .176 .158 .035 .037 .077 .024 .133

.5 5.014 2.000 1.999 .974 .199 .473 .210 .037 .039 .078 .025 .114

.8 5.003 2.001 2.000 .984 .200 .771 .428 .038 .040 .078 .025 .076
.5 .0 5.004 1.999 2.000 .971 .500 -.021 .121 .034 .035 .075 .025 .136

.2 5.003 2.000 2.000 .967 .500 .175 .125 .036 .036 .078 .024 .137

.5 5.002 1.999 2.000 .973 .500 .469 .159 .038 .040 .077 .022 .120

.8 5.006 2.000 2.000 .982 .499 .770 .347 .040 .042 .076 .023 .076
.8 .0 5.004 1.999 2.000 .968 .799 -.023 .101 .034 .034 .078 .026 .137

.2 5.005 1.999 2.000 .970 .799 .171 .106 .037 .036 .075 .024 .131

.5 5.001 2.000 2.000 .972 .800 .473 .137 .037 .038 .079 .022 .115

.8 4.995 2.002 2.000 .982 .800 .768 .297 .041 .044 .077 .021 .080
.0 .0 5.001 1.999 2.000 .984 -.000 -.009 .110 .025 .028 .053 .017 .095

.2 5.007 2.000 2.000 .986 -.001 .189 .121 .025 .028 .053 .018 .091

.5 4.994 2.000 2.000 .985 .001 .487 .166 .026 .029 .054 .018 .080

.8 5.009 2.000 2.001 .988 .000 .786 .359 .027 .029 .054 .018 .049
.2 .0 5.005 2.000 1.999 .985 .200 -.006 .095 .025 .028 .053 .018 .099

.2 5.005 2.001 2.000 .987 .199 .187 .099 .024 .028 .052 .018 .095

.5 4.999 2.001 2.001 .987 .200 .488 .139 .027 .029 .054 .017 .076

.8 5.005 2.001 2.000 .989 .200 .786 .296 .028 .030 .052 .017 .048
.5 .0 5.000 1.999 2.001 .984 .500 -.010 .073 .023 .028 .052 .018 .095

.2 4.998 2.000 2.000 .984 .500 .184 .080 .025 .028 .053 .017 .095

.5 5.001 2.001 2.000 .987 .500 .482 .106 .027 .031 .052 .016 .081

.8 5.000 2.000 1.998 .990 .500 .785 .246 .029 .032 .054 .015 .049
.8 .0 5.001 2.000 1.999 .984 .800 -.011 .064 .023 .027 .054 .019 .096

.2 5.003 2.000 1.999 .985 .799 .183 .067 .024 .028 .053 .017 .096

.5 5.007 2.000 2.000 .989 .799 .480 .091 .027 .032 .052 .015 .080

.8 5.002 2.000 2.000 .992 .800 .785 .200 .031 .034 .054 .014 .049
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Table 2. Mean and RMSE for the QMLEs, DGP1 with Normal Mixture Errors
n = 50, 100, and 200, for upper, middle and lower panels, respectively

MC Estimate of Mean MC Estimate of RMSE
ρ γ β0 β1 β2 σ ρ γ β0 β1 β2 σ ρ γ
.0 .0 5.003 1.998 1.999 .931 .001 -.048 .195 .050 .060 .146 .031 .200

.2 4.993 2.000 2.001 .941 .002 .147 .230 .053 .060 .141 .033 .204

.5 5.011 1.997 1.998 .941 -.001 .429 .318 .054 .066 .143 .033 .187

.8 5.035 2.000 2.001 .952 -.000 .738 .822 .058 .070 .141 .037 .137
.2 .0 5.005 2.003 2.000 .936 .201 -.047 .168 .048 .057 .141 .032 .192

.2 5.000 2.001 1.998 .937 .200 .145 .185 .050 .060 .143 .031 .195

.5 5.011 1.998 1.999 .946 .199 .434 .259 .056 .066 .142 .032 .184

.8 5.035 1.996 1.999 .956 .198 .737 .664 .059 .072 .143 .035 .134
.5 .0 4.999 1.999 2.002 .930 .501 -.056 .139 .047 .053 .145 .033 .201

.2 5.004 2.001 2.001 .935 .499 .125 .147 .050 .057 .146 .031 .202

.5 4.997 2.000 2.002 .947 .501 .421 .209 .054 .064 .141 .030 .188

.8 4.983 1.998 2.000 .959 .499 .734 .567 .061 .077 .140 .030 .135
.8 .0 5.004 2.000 2.001 .934 .800 -.059 .122 .045 .051 .146 .035 .198

.2 4.999 2.001 2.002 .938 .801 .133 .131 .047 .054 .145 .032 .199

.5 4.997 2.000 2.000 .948 .800 .421 .172 .053 .063 .142 .029 .187

.8 5.004 1.996 2.001 .956 .801 .731 .406 .061 .076 .140 .027 .137
.0 .0 5.007 2.000 2.001 .969 -.000 -.021 .192 .036 .033 .099 .026 .134

.2 4.999 2.001 1.999 .967 .000 .175 .216 .036 .034 .095 .027 .132

.5 5.004 2.000 1.999 .971 -.001 .472 .276 .037 .034 .097 .029 .117

.8 5.005 2.000 2.001 .982 .001 .770 .516 .038 .038 .099 .031 .078
.2 .0 5.008 2.000 2.001 .969 .199 -.022 .165 .035 .033 .098 .027 .135

.2 5.002 2.001 2.000 .968 .200 .173 .178 .036 .033 .096 .027 .132

.5 5.002 2.000 2.001 .969 .200 .474 .222 .039 .037 .102 .028 .117

.8 4.994 2.000 2.001 .980 .200 .774 .448 .039 .037 .100 .029 .076
.5 .0 5.002 2.000 2.000 .968 .500 -.025 .132 .035 .032 .097 .028 .134

.2 4.998 2.001 2.000 .971 .501 .166 .140 .037 .034 .097 .027 .135

.5 4.999 2.000 1.998 .976 .500 .460 .184 .038 .036 .094 .027 .121

.8 5.002 2.000 2.002 .984 .499 .769 .357 .041 .039 .100 .027 .078
.8 .0 5.003 1.999 1.999 .968 .800 -.021 .115 .035 .031 .097 .030 .135

.2 4.995 1.999 1.999 .968 .801 .166 .117 .036 .033 .098 .028 .136

.5 4.994 1.999 1.999 .972 .801 .466 .145 .040 .037 .101 .026 .121

.8 4.992 1.999 2.000 .979 .800 .768 .296 .042 .040 .099 .025 .081
.0 .0 5.001 1.999 2.001 .984 .000 -.008 .113 .023 .022 .070 .016 .095

.2 4.997 2.001 2.001 .984 .000 .189 .126 .024 .022 .068 .016 .093

.5 4.993 2.001 2.001 .987 .001 .485 .170 .024 .023 .069 .017 .076

.8 4.992 2.001 2.001 .990 .000 .784 .367 .026 .024 .070 .019 .052
.2 .0 5.001 2.000 2.000 .984 .200 -.011 .093 .023 .022 .068 .016 .095

.2 5.000 1.999 2.001 .984 .200 .187 .103 .024 .022 .067 .016 .091

.5 4.999 2.001 1.999 .986 .200 .486 .141 .024 .022 .069 .016 .079

.8 4.996 2.000 2.000 .989 .200 .787 .304 .026 .024 .070 .017 .051
.5 .0 5.000 1.999 2.000 .986 .500 -.010 .077 .024 .021 .068 .017 .095

.2 5.000 2.000 2.000 .982 .500 .183 .081 .023 .021 .072 .016 .094

.5 4.999 2.000 2.000 .987 .500 .487 .108 .025 .023 .069 .015 .077

.8 5.001 2.000 2.000 .991 .500 .787 .238 .026 .025 .070 .016 .049
.8 .0 5.002 2.000 2.000 .984 .800 -.009 .065 .022 .021 .068 .018 .096

.2 4.998 2.000 2.000 .984 .801 .187 .072 .024 .022 .067 .017 .091

.5 5.003 2.001 2.000 .986 .800 .484 .092 .025 .024 .069 .015 .079

.8 5.003 2.000 2.001 .991 .800 .784 .202 .028 .026 .068 .015 .049
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Table 3. Mean and RMSE for the QMLEs, DGP1 with Normal-Gamma Mixture Errors
n = 50, 100, and 200, for upper, middle and lower panels, respectively

MC Estimate of Mean MC Estimate of RMSE
ρ γ β0 β1 β2 σ ρ γ β0 β1 β2 σ ρ γ
.0 .0 5.007 2.001 2.000 .938 -.000 -.037 .222 .056 .064 .146 .035 .193

.2 5.007 2.000 1.999 .935 -.000 .158 .235 .057 .064 .142 .034 .193

.5 5.020 1.998 1.997 .943 -.002 .444 .323 .059 .065 .147 .035 .175

.8 5.042 2.000 2.000 .945 -.000 .747 .821 .060 .070 .142 .036 .125
.2 .0 5.008 1.999 1.998 .935 .199 -.032 .176 .056 .064 .143 .032 .199

.2 5.002 1.999 2.001 .935 .200 .151 .198 .059 .066 .149 .032 .201

.5 4.992 2.000 2.000 .945 .200 .437 .268 .060 .067 .145 .032 .178

.8 5.008 1.999 2.002 .955 .200 .745 .723 .063 .072 .144 .033 .127
.5 .0 5.005 2.000 2.000 .938 .499 -.051 .136 .053 .062 .147 .032 .202

.2 5.002 2.000 2.000 .941 .500 .150 .149 .056 .065 .144 .030 .193

.5 5.001 1.999 1.999 .945 .500 .436 .213 .060 .070 .142 .027 .174

.8 5.003 1.998 1.999 .956 .498 .739 .550 .065 .073 .140 .027 .131
.8 .0 5.001 1.999 1.999 .938 .799 -.034 .115 .052 .059 .147 .031 .189

.2 5.010 2.001 1.996 .941 .799 .148 .121 .053 .065 .142 .028 .198

.5 5.012 2.000 2.002 .947 .800 .440 .171 .061 .071 .141 .025 .182

.8 5.001 2.000 2.002 .959 .801 .736 .407 .067 .076 .140 .023 .134
.0 .0 5.007 2.000 2.000 .965 .000 -.014 .140 .037 .042 .099 .023 .138

.2 4.998 2.001 2.000 .968 .001 .179 .149 .036 .043 .101 .022 .135

.5 5.008 2.000 2.000 .972 -.001 .475 .220 .039 .044 .099 .023 .114

.8 5.014 2.000 2.000 .976 -.000 .774 .508 .042 .045 .101 .025 .077
.2 .0 5.005 2.001 2.002 .964 .199 -.017 .116 .036 .043 .099 .023 .134

.2 5.000 2.000 1.999 .971 .200 .176 .131 .037 .043 .102 .023 .136

.5 5.001 2.000 2.001 .974 .200 .468 .175 .038 .044 .096 .022 .120

.8 5.002 2.000 2.000 .979 .199 .773 .415 .041 .046 .100 .022 .076
.5 .0 4.994 1.999 2.000 .965 .501 -.017 .098 .034 .042 .099 .024 .134

.2 4.999 2.001 1.999 .971 .500 .173 .108 .036 .043 .099 .023 .134

.5 5.010 2.001 2.000 .975 .499 .464 .147 .040 .046 .099 .021 .121

.8 5.014 2.000 2.001 .982 .500 .771 .365 .045 .049 .101 .020 .077
.8 .0 5.000 2.001 2.000 .967 .801 -.021 .086 .034 .041 .097 .026 .137

.2 4.997 2.001 1.999 .968 .801 .170 .092 .036 .044 .098 .023 .133

.5 5.002 2.002 2.000 .971 .800 .466 .121 .040 .048 .101 .020 .118

.8 5.004 2.000 2.001 .978 .801 .771 .281 .047 .052 .101 .018 .075
.0 .0 5.003 2.001 2.001 .982 -.000 -.006 .118 .027 .021 .069 .017 .096

.2 5.004 1.999 2.000 .982 .000 .189 .128 .026 .022 .070 .017 .095

.5 5.005 2.000 2.000 .989 .000 .486 .173 .026 .023 .071 .017 .078

.8 4.996 2.000 2.000 .989 .000 .788 .361 .026 .023 .072 .018 .048
.2 .0 4.998 1.999 1.999 .984 .201 -.011 .097 .026 .022 .069 .017 .095

.2 4.998 2.000 2.000 .984 .200 .188 .105 .027 .022 .071 .017 .094

.5 4.999 1.999 2.001 .986 .200 .486 .141 .027 .023 .070 .016 .077

.8 5.000 2.000 2.000 .989 .201 .788 .299 .028 .023 .074 .016 .048
.5 .0 5.003 2.000 2.000 .982 .500 -.010 .080 .026 .021 .070 .018 .094

.2 5.001 2.000 2.000 .983 .499 .186 .086 .027 .022 .070 .017 .093

.5 5.003 2.000 2.000 .984 .500 .487 .110 .028 .023 .069 .016 .078

.8 5.006 1.999 1.999 .989 .499 .786 .248 .029 .025 .072 .015 .050
.8 .0 5.003 2.000 1.999 .985 .800 -.014 .067 .024 .021 .071 .018 .095

.2 4.998 2.000 2.000 .984 .801 .185 .071 .027 .022 .068 .017 .095

.5 5.003 2.000 2.000 .986 .799 .483 .093 .029 .024 .070 .015 .077

.8 4.997 1.999 2.000 .989 .800 .784 .202 .031 .025 .071 .014 .049
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Table 4. Empirical Sizes (%) for the Four Tests, DGP1 with Normal Errors

n = 50 n = 100 n = 200
ρ0 γ0 T1n T2n T3n T4n T1n T2n T3n T4n T1n T2n T3n T4n
-.8 -.8 8.55 7.75 8.15 9.15 6.60 6.75 6.75 7.85 6.10 5.45 4.90 5.30

-.5 9.55 8.30 10.15 11.65 6.95 6.45 6.90 7.35 6.10 6.30 6.30 6.75
-.2 9.80 6.80 11.20 10.60 6.85 7.05 6.60 7.65 6.80 5.95 5.50 5.70
.0 9.80 8.55 10.60 13.05 6.90 7.50 6.70 8.05 5.90 5.30 7.10 7.10
.2 9.30 9.40 9.85 12.70 7.20 6.30 6.85 7.60 6.50 5.95 6.50 6.60
.5 12.05 9.75 12.55 14.10 8.10 7.40 6.95 8.00 5.85 6.10 6.40 6.50
.8 12.70 8.20 9.75 11.20 7.75 6.25 7.30 7.45 6.35 5.95 6.00 6.90

-.5 -.8 9.80 8.55 8.45 10.20 7.05 5.35 7.40 6.85 6.90 5.90 5.30 5.90
-.5 10.80 8.15 10.60 10.70 6.75 6.05 6.40 7.55 6.10 6.10 6.15 6.05
-.2 10.25 8.10 11.40 12.30 6.65 6.05 8.00 7.30 5.55 5.80 6.10 6.90
.0 9.65 7.60 9.75 11.05 8.40 7.40 6.60 7.75 6.00 6.30 6.65 7.30
.2 10.50 7.85 10.75 11.00 6.95 5.80 6.90 7.60 5.80 5.40 5.75 5.45
.5 10.80 8.20 8.85 10.40 7.20 5.95 6.90 6.55 6.00 5.20 6.20 6.55
.8 15.00 7.15 12.20 13.10 8.80 6.30 7.70 7.60 7.70 6.15 5.60 6.15

-.2 -.8 9.95 7.40 7.55 8.70 7.05 5.85 6.65 7.10 6.75 5.50 6.75 6.35
-.5 10.80 8.25 9.70 11.35 7.10 5.60 6.55 6.70 5.30 5.05 5.75 5.90
-.2 10.35 8.40 10.65 11.40 6.40 6.20 6.80 7.15 6.20 5.15 6.70 6.70
.0 9.65 7.40 11.40 11.85 5.95 5.55 6.55 6.35 6.95 5.50 5.60 5.50
.2 9.35 7.65 9.30 10.55 7.15 6.75 7.25 7.15 5.50 5.15 4.80 5.15
.5 10.90 7.05 9.15 10.35 7.45 6.80 6.50 6.85 6.25 5.70 4.80 5.35
.8 13.45 8.05 10.15 11.00 9.50 6.20 7.00 8.05 7.65 5.45 6.45 6.05

.0 -.8 8.65 7.95 7.30 8.75 7.20 5.95 6.50 6.95 6.30 5.55 5.65 5.85
-.5 10.15 8.50 11.50 12.00 6.40 6.60 6.60 7.65 5.80 5.50 5.80 5.70
-.2 9.25 7.80 11.90 12.00 6.90 6.85 7.15 8.25 5.30 5.25 6.65 6.30
.0 9.60 7.70 10.25 10.70 6.80 5.40 7.70 7.20 6.40 5.25 6.05 6.45
.2 10.45 7.40 9.95 10.15 7.30 5.80 7.60 7.95 5.65 5.90 5.60 5.05
.5 11.40 7.55 8.30 9.60 6.45 5.20 6.00 6.10 6.90 5.95 6.50 6.65
.8 14.10 6.65 9.50 9.90 9.85 6.80 6.45 6.90 7.50 5.10 5.90 5.35

.2 -.8 9.00 6.85 8.40 9.40 6.60 5.55 6.45 6.70 6.80 5.05 6.20 5.80
-.5 10.45 8.25 10.00 11.30 6.30 5.80 7.90 8.75 6.10 5.50 6.10 6.20
-.2 9.30 6.70 11.30 11.10 6.65 4.65 7.55 7.70 6.65 5.85 6.75 6.30
.0 10.60 7.10 10.45 10.60 6.80 6.20 7.20 7.15 6.30 6.25 7.05 7.40
.2 9.70 6.95 10.10 10.25 6.25 6.65 5.90 7.15 5.05 6.15 6.60 6.95
.5 11.85 7.40 9.30 9.25 7.70 6.55 6.35 7.10 6.45 5.60 4.75 6.10
.8 14.05 6.95 9.95 9.75 9.00 5.20 6.05 6.50 7.40 6.05 5.45 5.45

.5 -.8 8.55 7.50 7.65 9.00 8.00 6.85 6.80 8.30 6.00 4.90 5.70 5.80
-.5 10.75 7.90 10.45 10.95 7.40 6.15 7.25 8.40 6.15 6.65 5.90 6.70
-.2 9.25 7.30 9.30 9.90 6.95 6.05 6.75 7.05 5.75 4.95 5.70 6.40
.0 10.25 7.65 11.10 11.75 6.90 5.50 6.40 7.20 6.20 4.70 5.30 5.25
.2 11.20 6.80 10.85 10.65 7.20 6.85 7.80 8.35 6.25 6.15 6.70 6.40
.5 12.30 7.05 9.70 9.25 6.65 5.90 6.95 7.90 6.00 5.80 6.95 6.80
.8 17.00 6.95 9.60 9.10 10.60 5.65 5.70 6.00 7.30 4.75 5.55 5.30

.8 -.8 9.20 8.20 9.05 10.30 7.70 7.30 6.15 7.50 6.80 5.95 5.95 6.65
-.5 10.25 7.85 10.25 11.20 8.10 7.15 7.25 8.00 6.50 6.05 6.05 6.35
-.2 10.85 8.15 9.80 11.80 8.00 5.75 7.90 8.05 5.55 5.85 6.75 6.70
.0 10.55 7.55 10.50 10.60 7.30 6.35 7.70 7.70 7.60 5.75 6.25 6.10
.2 10.30 6.80 9.30 9.65 7.85 6.15 6.10 7.10 5.80 5.60 6.60 7.05
.5 12.80 6.00 8.65 8.85 6.15 6.55 6.35 7.35 7.05 5.25 5.70 5.50
.8 15.40 6.80 8.55 8.80 9.35 5.85 6.50 6.70 7.70 5.55 4.55 5.60
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Table 5. Empirical Sizes (%), DGP1 with Normal Mixture Errors

n = 50 n = 100 n = 200
ρ0 γ0 T1n T2n T3n T4n T1n T2n T3n T4n T1n T2n T3n T4n
-.8 -.8 9.60 7.80 7.65 9.10 6.35 6.20 6.35 7.00 5.25 5.35 5.60 5.70

-.5 10.45 6.60 10.40 10.85 7.75 6.90 7.30 8.55 6.15 4.30 5.60 5.95
-.2 10.50 8.25 9.55 10.95 7.80 7.25 6.55 7.05 6.90 5.65 5.75 6.50
.0 9.95 8.15 9.75 11.10 7.55 7.15 6.75 7.80 6.50 6.60 5.55 6.75
.2 10.20 10.05 9.85 12.20 6.20 7.45 6.75 8.80 5.65 5.45 5.60 6.20
.5 11.25 9.55 10.80 13.10 8.05 7.45 6.95 7.80 6.45 7.15 5.20 7.05
.8 10.15 8.20 9.70 11.20 8.00 6.50 7.30 9.20 6.55 5.30 6.30 6.45

-.5 -.8 8.85 7.60 8.05 9.60 6.45 5.75 6.15 6.75 5.35 5.40 5.50 5.35
-.5 8.20 7.30 9.10 9.70 7.00 6.15 7.10 7.05 5.85 4.40 5.50 5.85
-.2 9.90 7.85 8.75 10.25 8.45 6.75 7.55 8.80 5.95 5.55 5.05 6.10
.0 8.40 7.55 9.90 11.10 7.80 5.60 7.75 7.20 5.65 5.10 5.65 6.45
.2 10.85 7.90 8.95 10.10 7.15 5.95 6.15 6.45 5.85 5.00 5.65 5.90
.5 10.75 8.55 8.60 9.75 7.95 7.00 5.60 6.65 4.95 5.80 6.00 6.45
.8 13.85 7.00 12.45 13.10 7.85 6.85 7.45 8.75 8.15 4.70 5.60 5.45

-.2 -.8 8.15 5.85 7.65 8.25 7.20 6.15 5.60 6.75 6.15 5.55 5.05 5.15
-.5 8.70 6.80 8.95 9.90 7.20 5.70 7.30 7.35 6.95 5.80 5.55 6.20
-.2 9.65 7.95 9.95 11.10 7.85 6.40 6.80 6.85 5.75 5.60 5.30 5.45
.0 9.30 8.30 10.45 11.15 6.95 6.05 7.55 7.45 6.95 5.65 6.10 5.70
.2 10.85 7.65 10.65 12.20 7.65 7.15 6.65 7.95 6.25 5.75 5.60 5.85
.5 10.45 9.45 10.00 11.70 7.00 6.80 5.90 6.95 6.50 5.60 5.70 6.40
.8 13.90 7.70 10.80 11.90 8.20 5.85 6.65 7.70 7.65 5.35 6.15 6.00

.0 -.8 9.00 6.35 7.35 8.95 6.10 5.50 5.95 6.25 6.10 6.10 5.55 6.05
-.5 9.65 7.25 9.45 10.35 7.00 5.25 6.35 6.40 6.05 5.70 6.05 6.65
-.2 9.75 7.75 9.60 10.85 7.40 6.80 7.45 8.80 5.45 5.35 5.60 5.60
.0 9.95 7.35 10.30 11.10 6.45 4.80 6.85 6.65 5.80 5.65 5.55 5.85
.2 10.35 9.15 10.60 12.30 8.35 6.15 6.35 6.60 6.95 5.40 5.65 5.85
.5 11.45 7.40 9.35 10.45 7.30 6.85 7.35 7.70 5.90 5.20 5.55 5.50
.8 15.45 8.20 9.65 11.60 8.95 6.30 6.95 7.75 7.80 6.20 6.65 6.45

.2 -.8 8.65 7.40 7.75 9.10 7.20 6.75 5.50 7.10 5.80 5.25 5.90 5.75
-.5 9.90 7.95 8.75 10.50 6.45 6.40 8.10 8.30 5.30 5.45 6.30 6.20
-.2 10.05 8.65 10.30 11.65 6.85 5.45 7.05 7.55 6.05 5.25 7.15 6.85
.0 8.75 7.90 9.25 10.10 7.05 6.25 7.00 7.65 6.45 5.30 6.15 6.10
.2 10.20 6.60 9.55 9.80 6.55 5.70 6.75 7.05 6.20 6.25 5.55 5.85
.5 11.20 8.35 9.60 10.85 8.70 7.00 7.30 8.35 6.00 5.40 5.30 5.85
.8 15.55 7.85 8.95 9.95 8.55 5.85 6.20 6.75 7.15 5.25 6.60 6.20

.5 -.8 9.65 7.20 7.55 8.75 7.55 6.55 5.45 6.50 6.40 5.95 5.10 5.30
-.5 9.75 7.45 9.50 10.55 6.65 6.30 7.75 8.25 5.95 5.50 6.10 6.60
-.2 10.80 6.75 10.05 9.70 7.55 5.70 7.40 7.70 6.75 5.50 6.65 6.35
.0 9.75 7.10 10.20 11.25 5.95 5.80 6.75 7.00 5.60 5.75 6.05 5.85
.2 10.80 7.40 9.80 9.60 7.40 6.05 7.35 7.60 5.85 4.80 5.90 6.10
.5 12.75 6.65 9.60 10.30 7.40 5.75 6.80 7.15 6.65 5.25 5.40 5.10
.8 16.35 7.25 8.60 8.25 9.50 5.80 7.05 6.80 6.95 5.90 6.15 5.95

.8 -.8 8.70 7.50 7.85 9.60 7.05 4.95 6.80 5.85 4.90 4.40 5.65 5.45
-.5 10.10 7.95 8.60 9.70 7.55 5.45 7.75 7.70 6.40 4.65 6.60 5.75
-.2 10.20 6.90 9.75 10.10 8.40 5.90 7.20 7.55 5.50 5.05 6.95 6.40
.0 10.80 7.10 9.30 10.55 7.40 7.40 6.60 7.50 6.50 5.50 6.00 6.25
.2 10.15 7.35 9.50 10.30 7.60 6.20 7.45 7.85 6.95 6.00 5.40 6.15
.5 11.05 7.50 9.60 9.85 8.85 6.80 7.60 8.05 6.85 5.05 5.75 6.35
.8 16.80 6.80 9.60 8.30 9.75 5.55 7.85 6.60 7.70 5.55 5.55 5.70
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Table 6. Empirical Sizes (%), DGP1 with Normal-Gamma Mixture Errors

n = 50 n = 100 n = 200
ρ0 γ0 T1n T2n T3n T4n T1n T2n T3n T4n T1n T2n T3n T4n
-.8 -.8 10.95 8.50 7.35 10.15 6.65 5.35 6.95 6.95 6.15 5.30 5.70 5.60

-.5 11.55 9.20 9.15 10.55 7.40 6.45 6.85 7.70 6.50 5.70 6.25 6.35
-.2 11.15 10.30 10.15 12.85 7.10 6.85 7.95 7.45 6.05 6.65 6.65 6.85
.0 11.30 10.50 10.55 13.15 7.25 7.75 6.10 8.20 6.20 6.45 6.05 7.25
.2 10.25 10.00 10.10 12.60 7.10 6.60 7.00 7.30 6.30 6.80 5.45 7.05
.5 10.80 9.60 10.50 13.45 7.35 6.45 7.10 8.15 6.35 5.75 6.30 6.10
.8 11.35 7.70 10.55 11.75 7.45 6.15 7.40 7.90 7.30 6.35 6.15 7.05

-.5 -.8 10.55 7.05 6.90 8.55 7.40 7.65 6.35 7.95 6.15 4.80 5.65 4.60
-.5 11.00 7.80 9.70 11.20 6.45 5.70 7.70 7.25 6.50 5.95 6.15 5.70
-.2 10.00 8.10 9.75 10.75 6.85 6.55 7.15 7.05 7.05 6.25 5.55 6.25
.0 8.60 7.10 8.35 9.50 6.65 6.20 7.90 7.85 5.35 5.60 5.70 5.90
.2 10.10 8.80 8.60 10.45 7.30 6.65 7.25 7.95 5.90 6.60 4.95 6.60
.5 9.45 8.15 8.60 10.35 6.00 5.05 7.30 6.85 4.95 5.85 5.55 5.55
.8 15.45 7.30 10.00 11.10 8.60 6.55 6.35 7.75 6.20 5.05 5.35 5.80

-.2 -.8 9.25 7.25 7.90 9.10 5.90 5.75 7.85 7.25 7.10 6.00 5.05 6.40
-.5 9.05 6.80 8.90 9.30 7.10 7.55 6.25 7.55 6.15 6.15 6.35 6.55
-.2 10.25 7.40 9.75 10.90 7.70 6.35 7.10 7.45 6.20 4.70 5.70 6.00
.0 9.25 6.75 8.85 9.15 7.80 5.70 8.70 8.40 6.50 5.40 6.35 6.65
.2 9.60 7.35 9.80 10.15 7.25 6.45 6.55 7.75 5.50 5.05 6.55 6.15
.5 10.15 7.00 9.75 9.60 6.70 6.50 7.00 7.55 5.80 5.75 5.30 6.35
.8 14.50 6.55 10.50 10.30 9.20 7.30 7.20 7.45 6.85 5.95 6.65 6.40

.0 -.8 7.85 5.85 6.95 7.80 7.50 6.35 6.35 7.10 5.75 4.95 5.70 5.75
-.5 9.80 7.80 8.80 9.60 7.60 6.50 6.75 7.00 6.15 4.95 6.30 6.90
-.2 8.35 6.45 9.65 10.25 7.60 5.20 6.45 6.10 6.60 4.95 6.20 6.80
.0 11.35 8.85 9.30 10.05 7.50 6.35 8.15 7.65 6.05 6.05 6.70 5.95
.2 9.15 6.90 9.25 9.90 6.80 5.65 7.05 7.25 5.65 5.40 6.15 6.60
.5 9.70 8.10 8.20 9.95 8.15 6.20 6.75 6.55 6.80 6.30 5.55 6.70
.8 15.70 6.85 8.85 10.05 8.75 6.05 6.35 7.55 6.35 6.30 5.40 5.50

.2 -.8 9.40 8.05 7.85 9.20 7.35 5.35 6.75 7.00 5.40 5.40 5.80 6.00
-.5 8.95 8.85 8.95 11.05 7.30 5.75 6.95 7.20 6.75 5.40 5.40 5.50
-.2 10.55 8.35 10.35 11.65 6.65 5.65 7.85 7.40 5.50 6.00 5.75 6.50
.0 11.45 7.25 9.40 10.60 7.25 6.50 6.55 7.20 5.70 5.90 5.80 5.40
.2 11.10 6.55 10.70 9.80 7.65 6.30 7.00 7.50 6.90 5.75 5.75 6.25
.5 10.75 7.05 8.10 9.15 7.30 5.65 7.25 6.85 5.85 5.90 5.05 6.25
.8 13.70 7.00 9.10 9.85 8.85 5.35 6.65 5.65 6.80 5.10 5.55 5.40

.5 -.8 9.35 7.65 8.00 9.35 6.65 6.55 6.15 6.75 5.30 5.85 5.60 5.45
-.5 9.00 8.25 8.35 10.20 7.20 6.85 7.70 7.95 6.05 5.65 5.30 6.05
-.2 9.10 7.95 9.00 10.10 6.90 5.45 6.70 6.65 5.75 5.55 5.45 5.70
.0 9.50 7.95 10.90 11.60 7.60 6.30 7.05 7.85 5.65 5.90 5.75 6.50
.2 10.25 6.95 8.95 9.15 6.25 6.30 6.70 7.75 5.80 5.25 6.30 5.80
.5 11.25 6.75 8.00 8.05 7.90 5.50 7.00 7.35 6.55 5.85 6.00 5.60
.8 15.40 6.65 9.25 9.45 9.50 6.55 5.95 7.20 7.15 5.70 5.80 5.90

.8 -.8 9.10 7.35 8.25 9.70 5.95 5.00 6.75 7.20 5.25 4.55 6.25 5.90
-.5 9.75 7.45 9.50 10.20 6.90 7.55 6.25 7.65 6.05 5.85 6.05 6.30
-.2 9.25 6.20 9.45 10.10 6.80 7.20 7.25 8.10 6.75 5.55 6.10 5.70
.0 9.60 7.30 8.75 9.10 6.50 5.65 7.35 7.35 5.90 5.35 6.50 5.95
.2 9.60 7.40 10.05 9.90 7.70 6.30 6.30 7.25 5.70 5.00 7.20 6.80
.5 10.65 7.65 10.50 10.30 8.55 5.50 6.75 7.25 5.80 5.75 4.90 5.70
.8 14.50 6.75 8.45 8.45 9.20 5.50 5.85 5.75 6.40 5.90 5.40 5.90
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Table 7. Empirical Sizes (%) of the Four Tests, DGP2 with Normal Errors

n = 50 n = 100 n = 200
ρ γ T1n T2n T3n t4n T1n T2n T3n t4n T1n T2n T3n t4n
-.8 -.8 9.80 9.35 7.85 7.30 7.25 6.70 7.05 6.85 5.95 7.00 5.50 5.50

-.5 9.80 8.35 8.50 8.40 6.30 6.65 6.65 6.55 5.60 4.90 5.50 5.60
-.2 10.10 7.60 9.60 9.40 8.10 5.90 7.50 7.35 5.95 5.25 5.55 5.60
.0 9.40 8.15 9.10 9.00 7.70 5.80 7.95 7.65 5.20 5.65 6.40 6.40
.2 10.25 7.25 7.90 7.70 7.50 6.10 7.50 7.55 5.90 4.90 6.55 6.55
.5 10.55 7.80 8.50 8.60 7.85 5.95 7.10 7.35 6.40 5.50 6.10 6.10
.8 14.00 7.85 12.35 12.45 8.10 5.80 7.55 7.40 5.40 4.90 6.10 6.10

-.5 -.8 9.80 8.80 7.95 6.65 7.05 8.05 6.15 6.00 6.00 6.15 6.15 5.85
-.5 9.70 8.35 8.75 8.35 6.10 5.80 8.10 7.35 5.40 6.15 6.20 6.50
-.2 9.90 7.50 8.95 9.30 7.40 7.25 6.65 6.55 6.70 5.40 6.50 6.65
.0 10.20 6.05 9.20 9.35 7.05 6.20 6.20 6.65 5.60 5.00 6.05 6.00
.2 10.95 7.15 9.15 9.60 6.45 5.50 7.10 7.20 7.10 5.80 5.90 5.75
.5 11.20 6.85 8.45 8.25 7.05 5.85 6.35 5.90 6.15 6.15 6.35 6.35
.8 13.25 5.45 11.40 11.00 8.55 6.35 6.75 6.40 7.25 4.80 5.75 6.05

-.2 -.8 8.95 7.55 7.95 6.30 7.10 6.45 5.70 6.10 5.60 5.60 5.35 5.35
-.5 8.35 7.35 7.80 7.90 6.90 6.40 7.05 6.65 5.10 4.35 6.05 5.80
-.2 9.40 6.65 9.65 9.05 6.30 5.25 7.50 8.05 5.25 5.80 6.25 7.05
.0 9.70 7.40 9.05 8.95 6.55 6.15 6.40 6.65 5.20 5.95 5.70 5.90
.2 10.55 7.65 9.30 9.35 7.80 6.75 7.80 7.45 6.90 5.90 5.65 5.80
.5 10.85 7.20 8.75 8.50 8.25 5.05 6.65 6.35 6.20 5.55 5.55 5.35
.8 14.60 7.45 9.80 9.65 9.25 6.05 5.90 6.55 6.65 5.20 6.00 5.60

.0 -.8 9.25 7.65 8.25 6.90 6.85 5.60 5.50 5.15 5.85 4.55 5.50 5.60
-.5 9.80 7.85 9.45 8.75 6.85 6.15 7.75 8.00 6.25 5.85 5.50 5.30
-.2 9.45 7.40 9.40 9.40 6.90 6.40 7.40 7.35 6.35 6.10 6.80 6.55
.0 9.35 6.90 9.20 8.90 6.45 5.60 7.65 7.30 5.65 5.65 5.55 5.95
.2 10.35 8.05 10.15 10.85 7.65 6.65 6.80 7.15 5.75 5.90 5.80 6.20
.5 10.35 7.95 9.70 9.55 6.95 6.10 6.85 7.30 5.85 6.10 6.15 6.70
.8 13.25 7.10 10.25 9.95 8.40 5.85 7.10 7.05 7.35 4.80 6.00 6.50

.2 -.8 8.30 7.70 7.70 6.55 6.00 5.50 5.60 6.35 6.20 5.30 5.45 5.05
-.5 8.65 6.90 8.70 9.05 6.55 6.05 6.85 6.60 4.90 6.05 5.20 5.10
-.2 11.35 8.80 9.20 8.60 7.70 6.00 6.80 6.55 6.40 6.25 5.40 5.30
.0 10.10 7.95 10.05 9.55 7.80 6.80 7.45 7.50 6.35 5.55 6.85 6.25
.2 9.30 7.35 9.95 9.40 6.60 7.20 6.85 7.05 6.20 6.10 6.15 6.35
.5 10.15 8.30 9.85 10.30 5.75 5.95 6.85 6.70 6.00 5.50 5.50 5.40
.8 11.70 8.90 7.90 9.25 9.30 5.65 6.25 7.50 7.05 5.65 4.65 5.00

.5 -.8 9.55 6.75 7.20 6.30 7.25 6.05 6.85 6.95 6.90 5.55 5.95 5.90
-.5 9.10 6.40 9.35 9.15 7.00 7.50 6.85 7.00 5.15 5.50 5.20 5.20
-.2 10.90 8.90 11.40 11.55 7.05 6.05 7.80 8.20 5.75 5.65 6.50 6.60
.0 10.45 7.70 10.10 9.75 7.55 6.50 7.55 7.45 6.45 5.00 6.15 6.05
.2 10.60 8.00 10.65 10.80 7.40 6.35 7.15 7.55 5.85 6.10 6.30 6.40
.5 9.65 7.80 9.65 9.85 7.75 6.00 7.50 7.30 6.50 6.40 6.00 5.75
.8 11.30 10.15 10.00 10.10 8.00 7.80 7.95 8.10 6.00 5.85 5.95 6.10

.8 -.8 10.25 7.60 7.45 7.20 7.35 5.60 6.70 6.90 6.05 5.05 5.40 5.15
-.5 9.80 7.20 9.15 9.25 7.35 5.95 7.05 7.25 6.25 5.55 6.55 6.60
-.2 10.95 7.30 11.20 11.20 7.70 6.25 8.85 8.90 6.70 5.15 6.65 6.65
.0 12.45 8.05 12.10 12.05 8.90 6.80 8.20 8.40 6.00 5.25 6.55 6.55
.2 11.00 7.90 10.90 10.55 9.20 7.50 8.90 8.75 6.50 5.95 7.05 6.90
.5 12.70 8.90 11.90 12.10 8.35 7.10 8.05 8.35 6.75 6.05 6.00 5.85
.8 12.85 10.55 10.90 10.70 8.30 8.20 8.10 8.35 6.80 6.85 5.75 6.40
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Table 8. Empirical Sizes (%) of the Four Tests, DGP2 with Normal Mixture Errors

n = 50 n = 100 n = 200
ρ γ T1n T2n T3n t4n T1n T2n T3n t4n T1n T2n T3n t4n
-.8 -.8 6.95 9.75 8.25 7.25 6.15 7.85 6.25 6.15 5.15 6.70 5.70 5.05

-.5 9.55 8.30 8.90 8.80 6.70 7.90 7.45 7.50 6.00 6.05 5.80 5.65
-.2 8.40 6.85 10.25 10.20 8.05 6.55 7.80 7.65 5.80 5.85 5.30 5.30
.0 10.15 8.45 8.50 8.40 7.55 6.60 6.90 6.90 5.25 5.25 5.35 5.35
.2 9.15 6.75 8.80 8.65 6.35 6.75 5.85 6.05 5.45 5.35 5.70 5.50
.5 9.80 6.00 9.10 9.20 6.45 6.00 6.05 5.95 5.85 5.20 5.85 5.80
.8 13.30 6.60 13.00 12.85 8.40 5.45 7.85 7.85 6.50 4.55 6.00 6.05

-.5 -.8 9.05 9.95 8.35 6.30 6.75 8.45 6.65 5.85 5.55 5.95 5.70 4.95
-.5 7.90 7.65 8.55 8.05 6.15 7.00 6.60 6.95 5.85 5.00 6.05 6.20
-.2 9.65 8.10 7.45 7.95 7.00 6.25 7.15 7.15 6.20 5.40 6.35 6.50
.0 9.65 7.50 8.40 8.65 6.95 6.45 7.05 6.95 6.05 5.70 6.85 7.15
.2 10.40 8.20 9.10 8.90 7.50 5.90 6.35 6.05 7.30 5.15 5.45 5.45
.5 9.50 5.75 9.00 8.70 9.30 6.55 6.35 6.50 7.00 5.65 5.20 4.95
.8 14.60 6.95 11.70 11.00 9.35 4.95 6.60 6.55 7.00 5.40 6.40 6.25

-.2 -.8 10.00 8.40 8.50 8.00 8.15 6.40 5.80 5.65 6.45 6.85 5.80 5.05
-.5 9.30 8.05 9.15 9.50 6.85 6.00 7.10 6.55 5.65 4.95 5.55 5.60
-.2 8.95 8.05 10.15 9.40 7.55 6.20 7.00 7.20 6.20 5.75 5.70 5.85
.0 9.50 6.70 8.75 8.70 7.35 5.95 7.05 7.10 6.10 5.05 6.65 6.25
.2 10.25 7.20 9.20 9.85 6.75 5.15 6.55 6.55 5.15 4.45 6.60 6.40
.5 10.65 6.60 7.65 7.80 9.00 6.35 6.50 6.10 6.75 5.45 6.15 6.35
.8 14.85 8.90 8.95 8.35 9.55 6.00 7.10 7.35 7.20 6.05 5.95 5.95

.0 -.8 9.45 8.30 7.50 6.90 6.70 5.55 6.35 5.95 5.85 5.50 5.30 5.30
-.5 9.85 7.50 10.05 9.75 7.70 7.50 7.30 7.10 5.40 4.65 5.85 5.45
-.2 9.20 7.65 9.00 9.75 5.75 6.00 6.95 7.35 6.00 5.80 6.20 6.50
.0 10.35 8.10 9.75 10.20 8.05 5.70 7.60 7.80 5.15 5.65 6.50 6.40
.2 8.60 8.10 8.55 8.25 7.15 6.55 7.40 7.85 6.65 4.70 5.95 5.80
.5 9.25 7.50 7.70 8.35 7.75 6.45 6.05 6.80 5.15 5.15 5.55 5.30
.8 13.95 6.90 7.85 8.30 9.30 5.90 6.50 7.00 7.00 6.15 5.35 5.80

.2 -.8 9.60 7.00 7.10 7.90 7.00 5.55 6.40 5.95 6.05 6.00 4.65 4.75
-.5 9.50 8.55 8.00 7.50 7.65 7.15 6.75 6.45 6.50 6.65 6.55 7.00
-.2 11.55 9.30 10.45 10.00 8.00 6.40 8.20 7.70 6.50 6.05 6.70 6.40
.0 10.25 8.65 10.70 10.60 7.50 6.30 6.35 6.30 5.90 5.80 6.40 6.15
.2 11.65 6.75 9.20 9.40 6.60 6.90 6.80 7.30 6.75 5.25 6.05 5.35
.5 9.65 7.40 8.35 8.35 7.70 6.10 7.25 7.50 6.85 5.75 6.45 6.30
.8 11.85 7.25 8.60 9.65 8.00 6.20 6.45 6.35 6.45 5.85 5.70 5.30

.5 -.8 9.40 7.15 7.25 6.70 7.00 5.35 6.20 5.95 5.35 4.05 5.85 5.60
-.5 9.60 8.25 8.80 8.55 7.60 6.30 7.45 7.55 6.10 5.70 5.75 5.85
-.2 10.50 7.70 9.95 9.50 8.95 6.50 7.05 7.20 6.50 5.75 6.40 6.35
.0 11.70 9.35 10.95 10.80 7.15 7.60 7.15 7.05 7.10 5.85 6.30 6.30
.2 11.50 8.50 10.40 10.65 8.65 6.70 7.05 7.20 7.25 5.80 6.85 6.60
.5 11.95 9.80 10.55 10.25 7.95 7.35 7.80 7.15 6.30 5.25 6.15 6.05
.8 10.95 10.15 9.90 9.75 9.15 7.55 8.40 8.25 7.00 6.30 5.55 6.00

.8 -.8 9.75 8.25 8.70 8.05 7.25 6.10 6.15 6.05 5.60 5.15 5.85 5.75
-.5 11.05 7.55 10.25 10.20 8.15 7.15 7.70 7.65 6.15 5.10 5.75 5.75
-.2 11.05 8.10 10.80 10.80 7.65 6.70 7.40 7.50 6.10 6.10 6.40 6.40
.0 13.00 8.25 11.55 11.45 8.35 6.60 9.05 8.85 6.70 5.40 5.95 6.20
.2 13.75 9.05 12.75 12.85 10.15 8.00 8.05 7.75 6.60 5.50 6.10 5.90
.5 14.90 11.40 11.95 12.45 10.55 7.90 9.35 9.40 6.20 5.10 6.85 7.00
.8 17.10 16.45 13.95 14.20 11.05 10.80 9.55 9.40 7.35 7.35 7.40 7.40
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Table 9. Empirical Sizes (%) of the Four Tests, DGP2 with Normal-Gamma Mixture

n = 50 n = 100 n = 200
ρ γ T1n T2n T3n t4n T1n T2n T3n t4n T1n T2n T3n t4n
-.8 -.8 8.55 11.00 8.30 7.40 7.45 7.00 6.60 6.40 6.25 6.60 5.60 5.40

-.5 10.55 9.00 9.10 9.45 6.45 7.40 7.70 7.65 6.45 6.15 6.40 6.65
-.2 9.20 7.70 8.55 8.35 7.70 6.40 7.00 6.95 6.75 5.90 6.20 6.25
.0 10.55 6.90 9.00 8.90 7.35 6.00 7.30 7.00 5.90 6.45 5.90 5.90
.2 10.85 7.85 10.10 10.20 6.65 5.25 5.95 5.95 5.15 5.75 5.15 5.15
.5 10.55 6.85 9.40 9.30 8.20 6.45 7.30 7.35 5.85 5.65 5.85 5.85
.8 15.90 7.60 12.70 12.55 9.85 6.70 6.45 6.50 7.05 4.85 5.30 5.45

-.5 -.8 9.00 9.55 9.85 8.25 6.65 6.15 6.15 6.10 5.10 6.35 6.05 6.05
-.5 9.40 8.60 8.90 8.35 6.30 6.20 6.85 6.70 5.75 5.25 6.40 6.15
-.2 8.10 6.85 8.30 7.90 7.10 6.85 7.65 7.70 6.05 5.50 6.15 6.40
.0 9.90 6.80 9.40 9.50 7.50 6.35 7.55 7.50 5.50 5.25 5.75 5.60
.2 10.45 6.35 10.10 9.90 8.00 5.95 6.15 5.95 6.55 5.55 6.50 6.15
.5 10.60 7.00 7.75 7.95 7.80 6.95 7.45 7.65 5.85 5.55 5.95 5.95
.8 12.50 6.50 10.60 10.60 9.30 6.05 7.05 6.45 8.20 6.80 5.25 5.45

-.2 -.8 8.05 7.70 6.45 6.75 7.45 6.65 5.80 5.10 6.20 5.45 5.50 5.20
-.5 9.30 6.60 8.95 9.05 7.10 6.25 7.30 7.15 6.95 5.45 4.70 4.60
-.2 10.90 8.10 8.90 9.40 6.65 6.70 6.85 5.85 6.30 5.55 6.40 6.05
.0 9.95 8.05 8.80 8.50 7.20 6.10 6.75 6.60 6.25 5.85 6.10 6.00
.2 9.10 6.90 9.50 9.55 7.45 6.05 7.40 7.80 6.60 5.25 5.85 6.05
.5 10.75 7.95 8.65 8.70 9.15 5.65 6.95 6.65 5.70 5.75 6.20 6.60
.8 13.90 7.00 10.80 10.35 8.65 5.30 6.50 6.30 7.90 5.95 6.05 6.00

.0 -.8 8.85 6.60 8.65 6.85 6.60 6.45 5.95 5.65 5.90 6.05 4.80 5.05
-.5 9.20 7.45 9.00 9.00 7.80 6.05 6.15 5.95 6.00 5.65 6.25 5.85
-.2 10.35 7.45 10.35 10.80 6.35 6.80 8.40 8.30 5.85 5.45 6.15 6.30
.0 11.00 8.00 10.60 10.85 8.85 6.20 8.15 8.35 6.30 6.30 6.25 5.95
.2 11.05 7.80 9.10 8.80 6.75 5.75 6.95 7.00 7.35 5.55 6.50 6.05
.5 11.40 9.50 9.75 9.85 7.80 5.65 8.10 7.45 6.15 6.75 4.50 4.45
.8 15.10 8.15 8.45 9.15 9.65 5.80 5.55 5.75 6.60 5.25 5.00 5.40

.2 -.8 9.10 6.80 7.00 7.25 8.20 6.25 6.60 5.75 6.25 6.15 5.80 5.70
-.5 9.35 8.00 9.80 9.15 7.40 7.00 7.30 7.40 5.95 5.40 6.20 6.30
-.2 10.95 8.90 9.10 9.10 8.55 5.95 8.30 8.10 6.30 6.35 5.00 5.05
.0 10.60 8.70 10.65 10.70 7.50 6.50 6.90 6.60 5.90 6.00 5.80 5.90
.2 10.55 8.60 9.90 9.35 7.85 6.75 7.20 7.35 5.25 5.50 6.30 6.20
.5 10.40 9.35 11.05 10.95 6.95 7.00 6.75 6.90 6.15 6.20 6.10 6.15
.8 13.00 9.55 9.40 9.65 8.25 6.00 6.20 6.95 7.15 5.45 6.25 5.65

.5 -.8 9.65 8.25 8.60 8.35 5.70 5.45 5.55 5.25 4.95 5.65 4.65 4.80
-.5 10.05 7.25 10.50 10.90 6.40 6.30 7.80 7.50 5.35 4.80 5.75 5.75
-.2 12.55 8.95 10.65 10.50 6.60 5.40 7.25 7.20 6.25 5.75 5.95 5.95
.0 11.75 8.90 9.60 10.10 7.95 5.30 7.85 7.70 5.60 5.15 6.05 5.75
.2 11.95 8.70 11.20 11.00 8.35 5.85 7.50 7.25 7.35 6.30 6.50 6.65
.5 14.65 9.55 12.25 12.40 7.60 7.50 7.25 7.25 7.00 5.55 6.55 6.60
.8 14.10 10.35 11.65 10.70 8.65 7.70 7.45 7.80 6.45 6.85 5.90 6.30

.8 -.8 10.00 7.95 8.80 8.75 6.95 6.05 6.95 6.85 6.90 6.10 6.15 6.25
-.5 9.10 7.05 10.90 10.60 7.50 6.05 7.05 7.15 6.35 4.95 5.30 5.60
-.2 11.30 9.05 11.70 11.60 7.55 6.25 7.30 7.00 6.40 5.90 6.30 6.65
.0 15.10 10.90 12.30 12.40 7.35 6.20 8.25 8.00 6.85 6.25 7.75 7.70
.2 15.25 9.10 14.25 14.20 7.90 6.50 9.40 9.10 6.60 5.65 6.30 6.30
.5 17.85 10.55 15.65 15.80 9.45 8.05 7.05 7.95 7.15 6.30 7.45 7.30
.8 19.45 13.95 16.60 16.60 8.35 8.20 7.95 8.25 7.30 6.95 6.50 6.20
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