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ABSRACT: Modelling and forecasting of interest rates has traditionally proceeded in 
the framework of linear stationary models such as ARMA and VAR, but only with 
moderate success. We examine here four models which account for several specific 
features of real world asset prices such as non-stationarity and non-linearity. Our four 
candidate models are based respectively on wavelet analysis, mixed spectrum analysis, 
non-linear ARMA models with Fourier coefficients, and the Kalman filter. These models 
are applied to weekly data on interest rates in India, and their forecasting performance is 
evaluated vis-à-vis three GARCH models (GARCH (1,1), GARCH-M (1,1) and 
EGARCH (1,1)) as well as the random walk model. The Kalman filter model emerges at 
the top, with wavelet and mixed spectrum models also showing considerable promise.  
 
Keywords: Interest rates; wavelets; mixed spectra; non-linear ARMA; Kalman filter; 
GARCH; Forecast encompassing. 
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1. INTRODUCTION 

 
 
Throughout its history, the world of finance has typified the well-known adage “Nothing 
is permanent except change”. There have, however, been periods when change has been 
gradual and evolutionary, and others, when fundamental and cataclysmic “shape-
shifting” ( a term due to Kane (1984)) has occurred within  a relatively short span of time. 
The last three decades have been witness to just such an episodic “shape-shifting” in 
financial markets and institutions, spurred on by the mutually reinforcing forces of 
financial deregulation and  financial innovation, riding on the back of rapid strides in 
information technology.   
 
One important consequence of the above developments has been the heightened 
uncertainty surrounding the behaviour of key macro-economic variables. The turbulence 
in interest rates, in particular, is of special  significance, as this impinges on a wide range 
of economic activities (see  James & Webber (2000) p.5 ).  
 
Central banks committed to inflation control, output stabilization and exchange rate 
management, also need to monitor interest rate movements, in view of the intimate 
interconnections between  these target variables and the interest rate. It should thus be 
hardly surprising that a great deal of attention has been focused in recent years on 
developing models and refining tools for  interest rate forecasting. The demand for this 
activity stems from at least three principal sources : 
(i) Banks, mutual funds and corporations, for managing the interest rate risk 

attached to their investment portfolios.  
(ii) Banks and other authorized dealers in hedge funds, for appropriate pricing of 

their hedging instruments. 
(iii) Central banks, from the viewpoint of monetary policy design. 
 
India has had a long history of strictly regulated interest rates, and it was only in the early 
1990s, with the onset of the financial liberalization program, that interest rates were 
progressively deregulated. The freeing of interest rates witnessed a surge in forecasting 
models (univariate as well as multivariate),  but the success of these models was strictly 
limited (see e.g. Dua & Pandit (2002) and Dua et al  (2003)). Most of these models were 
based on conventional linear econometric methodologies such as ARIMA, VAR, 
Bayesian VAR (BVAR) etc. Such models make heavy compromises with real world 
phenomena such as non-linearity and non-stationarity. It would therefore be interesting to 
examine whether resorting to more sophisticated models, paying special attention to these 
and related features, could deliver improved forecasting performance. This is what we 
attempt to examine in this paper, using recent (post-liberalized) data on interest rates in 
India. A major conclusion emerging from our paper is that models exploiting some of the 
newer methodologies (but based on simple univariate frameworks), can exhibit 
significant improvements over their more conventional counter-parts.  
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We develop forecasting models involving four  genres of methodology  viz.  
(i) Prediction based on a combination of artificial neural networks (ANN) and 

wavelet decompositions (Model I) 
(ii) Prediction based on mixed spectrum analysis (Model II) 
(iii) Prediction based on Fourier coefficients of non-linear ARMA models (Model III) 
(iv) Prediction based on the Kalman Filter  (Model IV) 
 
Each of these methods is  adapted towards addressing specific, non-standard features of 
the data. Thus Model I draws on a powerful and flexible new method, which adapts its 
parameters rapidly to changing patterns in the data. Model III  is designed to 
accommodate a wide range of non-linearities. Model II is unique in some respects. It is 
not a new method, having been known to engineers for at least three decades or more. Its 
use in economics has however been rare, if at all. It pays special attention to 
deterministic cycles, which could be present in the data. In the case of interest rates, such 
deterministic features could arise from at least three major sources viz. strong 
seasonalities in money supply, the process of averaging characterizing published data on 
interest rates, and the strong presence of “technical analysts” in the markets for 
government securities. So far as Model IV is concerned, it is a highly flexible method, 
especially geared to account for rapid changes in parameters and structures. Even though 
extensively used in several  forecasting situations in economics, its use in the interest 
rates context has been infrequent.  Hence at the risk of some taxonomic over-
simplification, all these models  may be referred to as second generation non-linear 
models.  
 
We assess the performance of these models vis-à-vis more traditional ( first generation) 
non-linear  models, usually used to forecast asset prices and interest rates, such as 
GARCH (1,1)  (Model V), exponential or E-GARCH (1,1)  (Model VI), and GARCH- 
in-mean or GARCH-M (1,1)  (Model VII).  We also use  additionally, the standard 
benchmark –the Random Walk model (Model VIII). 
 
The plan of our paper is as follows. Since Models I-III are not generally familiar to 
economists, their essential features are sketched in a non-rigorous fashion in the next 
three Sections ( Sections 2, 3 and 4). Model IV is better known among economists but for 
the sake of completeness, Section 5 is devoted to a brief discussion of the same, while 
Section 6 presents an even more terse description of the conditional volatility models 
(Models V to VII). Section 7 presents the forecasting results and undertakes a 
comparative assessment  of  Models I –IV vis-à-vis each other as well as the benchmark 
Models V-VIII. Finally, Section 8 gathers the main conclusions. 
 

2. WAVELET-BASED NEURAL NETWORKS 
 
As mentioned in the previous Section, conventional time series analysis has always found 
it difficult to grapple with issues of non-stationarity. Since non-stationarity is pervasive in 
real-world economic and financial series, economists of late, have evinced a great deal of 
interest in mathematical, statistical and engineering techniques such as evolutionary 
spectral analysis (e.g. Nachane & Ray (1993), Nachane (2004)) artificial neural networks 
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(e.g. Refenes & Azema-Barac (1994), Swanson & White (1995), Gençay & Qi (2001) 
etc.) and wavelets (Ramsey et al (1995), Ramsey & Zhang (1997) etc.). Wavelet analysis 
shares several features in common with spectral analysis but has the advantage of  
capturing features in the underlying series that vary across both time and frequency.i

 
Wavelet Definitions :  The following (largely heuristic) discussion on wavelets is 
intended to convey to the reader the main underlying ideas, and is modestly aimed at 
being “minimally sufficient” for the purpose of describing our forecasting model. The 
essence of wavelet analysis consists in projecting the time series of interest ⎨xt ⎬, t = 0, 
1,2….(N-1) onto a discrete wavelet filter ( or often called the mother wavelet) ⎨hl ⎬ = ( h0 
, h1 ….. hL-1,0…0 ). The discrete wavelet filter  is supposed to satisfy three properties: 
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                    and L is a suitably chosen positive integer. Note that we have assumed L < 
N, and padded the filter with (N-L) zeros at the end, so that ⎨hl ⎬ has the same dimension 
N as ⎨xt ⎬ . 
 
By virtue of (1),  ⎨hl ⎬  is a high-pass filter. ii  Associated with  ⎨hl ⎬ is a so-called scaling 
filter (or father wavelet), which is a low-pass filter, recoverable from  ⎨hl ⎬ via the 
relationship 
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Various types of mother wavelets have been suggested in the literature, the most 
frequently used being the Haar (1910) and Daubechies (1992) waveletsiii. 
 
Discrete Wavelet Transform (DWT) :  The next fundamental step in wavelet analysis is 
introducing the discrete wavelet transform (DWT), which can be done in several 
alternative ways. The intuitively most appealing procedure is the pyramid algorithm, 
suggested in Mallat (1989) (and fully explained in Percival & Walden (2000)).  
 
For a discrete series ⎨xt ⎬ of dyadic length N (i.e. N=2J , where J is a positive integer), the 
algorithm yields the N-dimensional vector of wavelet coefficients  
 
   .                                                                                                    (5) ( TJ
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where the ( )JN 2/  vector  can be interpreted as the vector of wavelet coefficients  

associated with the dynamics of our series ⎨x
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Multi-Resolution Analysis (MRA) : MRA represents a convenient way of decomposing 
a given series ⎨xt ⎬  into changes attributable at different scales. Let q1 represent the filter 
coefficients ⎨hl ⎬ , written in reverse order i.e.  
 
q1 = ( hN , hN-1, ….. h1,h0)T.   
 
Let qj  denote the zero-padded scale j wavelet filter coefficients, obtained by j 
convolutions of  q1  with itself,iv and let Ψj represent the (N/2j  x N) matrix of “circularly 
shifted” coefficients of qj (by a factor of 2j). We now write down the (NxN) matrix  Ψ as  
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    where ϑJ   is a (1xN) vector with each term equal to (1/√N) 

 
The MRA proceeds by defining the j-th level wavelet detail  dj,t  by 
 

dj,t  = Ψj
Twt

(j),   j=1,2….J                                                                  (6) 
 
where wt

(j)  are the wavelet coefficients at the j-th scale defined in (5). We also define 
the wavelet smooth sJ,t as 
 
sJ,t =  ϑj

Tvt
(J)                                                                                       (7) 

 
 An MRA may now be defined by the relationship 
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Thus each observation in the series is additively decomposed into the J wavelet details 
and the wavelet smooth. As we shall see shortly, it is the MRA  decomposition which 
enables us to use wavelets for prediction.  
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Maximum Overlap Discrete Wavelet Transform (MODWT) : The discrete wavelet 
transform (DWT) defined by the wavelet coefficients (5) is often referred to as the 
decimated transform as it arises from a successive down-sampling process (as described, 
for example, in Percival & Walden (2000), p 99-104). For prediction purposes, what is 
needed is an undecimated DWT. Such an undecimated DWT is provided by the so-called 
maximum overlap discrete wavelet transform or MODWT, described in Coifman & 
Donoho (1995), Percival & Walden (2000) etc. The MODWT coefficients can be 
obtained via a pyramid algorithm, as in the case of the decimated DWT, except that no 
down-sampling is involved (so that the wavelet coefficients at each level j comprise N 
elements).  
 
The MODWT possesses several advantages over the decimated DWT.  

(i) It does not require the series length N to be dyadic. As a matter of fact, N can 
be arbitrary. 

(ii) The MODWT coefficients wt
(j)  at scale j of the signal ( )mxxx ,......, 21 , m < N, 

are strictly the same as the first m coefficients at scale j of the signal 
.  ( )Nxxx ,......, 21

(iii) In contrast to the DWT, the MODWT details and smooth are associated with 
zero-phase filters, thus making it straightforward to match  features in the 
MRA  with those in the original series.  

 
Prediction by Wavelet-Based  Neural Networks : The issue of prediction based on 
wavelets is largely an unexplored field, though Bjorn (1995), Starck et al ( 1998 ) and 
others have offered  several new and promising prospects in this regard. Given our series 
of interest ⎨xt ⎬, t = 0, 1,2….(N-1) , the 1-period ahead forecast made at t = N-1, viz. 

 , is based not on a vector of past observations ( as in conventional AR models), but 
on the MRA (8) , using an un-decimated discrete wavelet transform such as the 
MODWT.  To avoid the problem of over-parametrization, a sparse selection of the detail 
and smooth  coefficients is required. Starck et al (1998) indicate a parsimonious way for 
selecting the coefficients

f
Nx

v. In succinct terms, their method predicts xN based on the 
wavelet detail coefficients       at scale j  (j=1,2…..J where J = [log

)1(21, −−− kNj jw 2 (N)] and 

[…] denotes “integral part of ”), and the smooth coefficients  . Here k is a 

positive integer, with k=1, 2….A
)1(21, −−− mNJ Js

j . Thus Aj is the number of wavelet details 
corresponding to level j, and has to be determined by the analyst. Similarly let Bm denote 
the number of smooth coefficients to be included i.e m=1, 2….Bm . Since there does not 
seem to be any formal way available to determine A1, A2,….. AJ, Bm  from the data, it is 
usual to set all of them equal to a small number p. The experimentation by Starck et al 
(1998  ) seems to indicate that values of p upto 4 should be adequate. We have in our 
analysis used p=4 throughout, and this seemed to be reasonably adequate. 
 
The next step in the analysis is to set up the following artificial neural network (ANN), 
which is a feedforward network, with one hidden layer and  1 perceptron.vi   
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where Γ1  is a suitable activation function.  
 
 
 

3. MIXED SPECTRUM METHOD 
 
Mixed Spectrum:  Many series occurring in nature exhibit strong periodicities. The 
search for “hidden periodicities” is  a problem with a long history, recurring time and 
again in several subjects such as seismology, astronomy, oceanography, acoustics and 
medicine. The modern treatment  of this problem may be said to begin with the seminal 
contributions of, among others, Bartlett (1954) and Grenander & Rosenblatt (1957). 
 

The problem has been termed in the literature  the harmonic regression  or fixed 

frequency effects model.  We assume that  the   series under consideration ⎨xt ⎬, t = 0, 

1,2….(N-1), is expressible as  
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where ut is a stationary process (capable of  ARMA representation) and the Ai, Bi, ωi,  µ  

and r (the number of  harmonics ) are unknown parameters to be estimated from the data. 

It is well known that the spectrum of  a stationary ARMA process is continuous, whereas 
that of a sinusoid  consists of a sharp peak at the frequency of the sinusoid. The spectrum 
of a sum of k sinusoids would thus be a step function  containing k jumps. This leads 
Priestley (1964, 1981) to the notion of a mixed spectrum. For a process such as xt  
described in (10), the spectrum F(ω) could be decomposed as 
 
          )()()( 21 ωωω FFF +=                                                            (11) 
 
                                         
where F1(ω) is a discrete spectrum (corresponding to the trigonometric sum) and F2(ω) is 

the continuous spectrum  corresponding to the ARMA process ut. F(ω) is then called a 

mixed spectrum. 
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Economic applications of such harmonic model concepts (to the best of our knowledge) 

have not been forthcoming, and this is surprising in view of the well-known periodic 

features exhibited by many economic series. We essay  to remedy this deficiency in the 

current paper. 

Priestley’s P(λ) Test:    Several approaches to the analysis of the model (10) have been 
suggested in the literature and here we develop the approach suggested by Priestley 
(1981), Chapter 8, as this appears to be more rigorously oriented to the underlying 
mathematical and statistical properties of the model  than most of the signal-processing 
methods suggested in the engineering literature.  
Priestley’s approach commences by developing a test (the so-called P(λ) test ) for 
estimating r (the number of harmonics), and then goes on to estimate the other parameters 
of the model.  
 
To motivate the P(λ) test  we reformulate (10) as  
 

                            (12) ∑
=

+++=
r

i
tiiit utDx
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)(cos φλµ

 
where now µ, Di, λi, and r are unknown parameters, the φi, are independent and 

rectangularly distributed on (-π,π) and ut is a stationary linear process with  a continuous 

spectrum. It is important to note that we assume that ⎨xt ⎬, has no unit roots ( or the unit 

roots have been filtered out via successive differencing) and further that µ is independent 

of time.  

The first step is to test the null hypothesis 

  

)13(...2,1,0:0 riDH i ==
 
 
i.e. that harmonic terms are absent from (13). 

Non-rejection of the null implies that ⎨xt ⎬ is a stationary ARMA process with a purely 

continuous spectrum. 

The P(λ) test rests on a simple intuition, viz. that under H0 , the correlogram of xt will 

eventually decay to zero. On the other hand, if one or more Di are non-zero, then the 

correlogram will exhibit sinusoidal behaviour in its tail.  The great advantage of this test 

is that in the event of the rejection of Ho , it also suggests estimates of Di ,λi, etc 
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The analytics of the method is described in Priestley (1981, Chapter 8). Let and  

denote two "window" estimates  of the spectrum of x

mf̂ nf̂

t ,obtained using suitable  truncation 

points m and n respectively  where n>2m (m,n, < N ). We next put 

                                                                                          (14) )()()( λλλ mn ffP
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at the Fourier frequencies   λ = (2πj/N) ;  j = 0,1,…[N/2] 
 
If the Di’s are not all zero, P(λ) will have several well-defined peaks say ω1 < ω2<….ωk 

These peaks are tested for significance (in the order of their occurrence), until a 

significant peak is found. If none of the peaks are significant, we conclude in favour of 

H0. The procedure may be illustrated as follows. 

Suppose we are testing the first peak at ω1 = (2πp/N),    p≠ 0, (N/2) 

 and let denote the autocorrelation of ⎨x)(sR x

∧

t ⎬ at lag s.  
A certain test statistic Jq is now defined (see Priestley (1981), p. 631) 
Let α be the chosen level of significance ;  
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P(λ) at  ω2 and so on. 
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Let  ϖ1 denote the peak selected by the above procedure. The amplitude of the 

corresponding harmonic term is now estimated by (15). The process is repeated using 

. The successive iterations of P(λ) may be denoted by P)()1( sR x

∧
(1)(λ), P(2)(λ) etc. At the 

kth stage the chosen level of significance for testing the peaks in  P(k)(λ)  has however to 

be adjusted to (α/k+1) in view of degrees of freedom corrections. If none of the peaks at 

a particular stage in the process say P(r)(λ) is significant, then the procedure is terminated 

at this stage with r harmonics being identified at the frequencies ϖj  , (j=1,…r). 

 

Bhansali’s Correction: Bhansali (1979) has noted that the correction formulae (15) and 

(16) due to Priestley are not sufficiently accurate as   is unstable for large values 

of s. He proposes replacing   by  , where  is the autocorrelation at 

lag s of the series ⎨x*
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Model Estimation:: Suppose by following either of the above procedures, we identify  r 
harmonics at the frequencies ϖj  (j=1…r) 
 
We then estimate the following model by OLS 
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The fact that ut may be correlated  is not much of  a cause for concern, since Durbin 

(1960) has shown that for harmonic regressions of the type (18),  OLS estimates of Ai 

and Bi are asymptotically efficient. 

 

We have already seen that the residual term ut will have a continuous spectrum, with an 

ARMA representation. However, for  forecasting purposes, an AR model is more 

convenient, and Bhansali (1979)  shows how  an autoregressive model may be fitted to ut 

by a suitable lag selection criterion. His preference is for the FPEα criterion developed in 

Bhansali and Downham (1977), though the use of other criteria such as AIC, BIC, etc. is 

also, of course, possible.  

Thus we may formulate the following three  stages in fitting a harmonic regression or 

fixed frequency  effects model. 

(1) We first estimate the number of harmonics r using  Priestley’s P(λ) test.  

(2) Next, we estimate the coefficients in the model (10) (using the value of r obtained 

in Stage 1) by the method suggested originally by Priestley  (1981), or 

(optionally) incorporating the Bhansali (1979) corrections.  

(3) Finally, we fit an AR model to the residuals  from the model estimated in Stage 2, 

using a suitable order selection criterion. 

 

4. Fourier-ARMA Models 

 
It is now well recognized that linear ARMA models fall considerably short of accounting 

for the complex  non-linear behaviour of real world financial series. Attempts to capture 

such complexity have run in diverse directions, with some of the important strands being 

the following  

(i) explicit non-linear models of the form )....,,.....( 11 qtttpttt xxfx −−−−= εεε , 

which for different specifications of f yield the Bilinear, SETAR, STAR etc. 

models (see Granger & Terasvirta (1993), De Gooijer & Kumar (1992) etc). 

(ii)  conditional volatility models such as ARCH, GARCH, EGARCH, GARCH-

M etc (see  Bollerslev et al (1992))  
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(iii)  asymmetric adjustment models (see Beaudry & Koop (1993), Potter (1995), 

Bradley & Jansen (1997) etc.)  

(iv) random-coefficients models (see Chow (1984), Nicholls & Quinn (1982) etc.). 

However, much of this parametric literature requires the specification of the 

precise nature of the underlying non-linearity. Since little a priori information 

is usually forthcoming on this aspect, such specification is often of the ad hoc 

variety.  

Recently, Ludlow & Enders (2000) have suggested a method for analyzing a time series, 

based on the universal approximating property of Fourier series, and which does not 

derive from a prior specification of the exact form of non-linearity. It essentially consists 

in specifying an ARMA model with deterministic time-dependent  coefficients, each of 

which can be  approximated by a finite (and reasonably short ) Fourier series. Following 

Ludlow & Enders (op. cit.), we may refer to such models as Fourier-ARMA (or F-

ARMA) models. Happily as it turns out, these models are remarkably straightforward to 

implement, comprising the following main stages. 

Step 1: Given the stationary series ⎨xt ⎬, t = 0, 1,2….(N-1), we start by estimating the 

best fitting ARMA model (using  the standard Box-Jenkins methodology) 
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Let the SBC (Schwarz Bayesian Criterion ) value of (19) be denoted as SBC(0) 

and let  denote the residuals of (19).  t

∧

ε

 

Step 2: The method proceeds by singling out one particular coefficient in (20) as being 

particularly prone to time-variability (usually α1   or  β1 is adequate in practice).vii 

Suppose this coefficient is αm . Let kj =(2πj/N), j=1,2….(N/2)   and estimate the models 

 

tmtjjmtjjt vxtkBxtkA ++= −−

∧

)cos()sin(ε  ,  j=1,2…..(N/2)                    (20)                                        
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and let SBC(j)  denote the SBC value of (20).  
 
Include  kj as a relevant frequency in the model iff  SBC(j)  <  SBC(0)  .   
 
This processviii will usually lead to a set of relevant frequencies kj* , j=1,2..r, (with 

) and a set of significant coefficients from A)2/(Nr ≤ j* and Bj*.  
 
Step 3: We now re-estimate our original model including the significant frequencies and 
coefficients from Step 2 i.e.  
 

[ ]∑ ∑ ∑
= = =

−
∗∗∗∗

−

∧

−

∧∧

+++++=
p

i

q

i
t

r

j
mtjjjjitiitit xtkBtkAxx

1 1 1
0 )cos()sin( εεβαα            (21)  

 
Further diagnostic checks can be performed on the model (21) and in particular any of the 
coefficients  which emerge as insignificant ( via standard t-tests) can be dropped. ∗∗

jj BA ,
 
A major advantage of this model is that it is linear in xt  rendering it particularly suitable 
for forecasting purposes.  
 

 

 
5. Kalman Filter Model 

 
Originally suggested in the engineering literature by Kalman, in the early 1960s,  as a 
technique for estimating the state of a noisy system, the Kalman filter has emerged as a 
highly flexible as well as powerful tool in the econometrician’s kit. In the course of 
econometric practice, the method has evolved over several refinements. Here we present 
a standard version, closely following Harvey (1989). Detailed treatments of the subject 
may be found in Jazwinski (1970), Kim and Nelson (1999), Durbin and Koopman (2001) 
etc. 
The system under study is viewed as modeled by two equations: 
 
(Transition Equation)     ttttt Rzz η+Φ= −1                                                          (22) 
 
(Observation Equation)      tttt zCx ε+=                                                            (23) 
 
Here zt  is of dimension (kx1) and is called the state vector of the system at time t and xt 
is the (mx1) vector of observations at time t. The stochastic disturbance terms ηt and εt 
satisfy the following assumptions 
 
(i)  ηt  ∼ N(0, Σ)    (ii)  εt  ∼ N(0,Ω)    (iii)  E(ηt, εt) = 0  , t=0,1…..(N-1) 
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The advantage of the above formulation lies precisely in the flexibility of its 
application.ix
 
As we are concerned with univariate applications, we deal with a much simplified 
version of the above in which m=1. We also assume further that Rt=I 
 
Details of the solution  in this special case, as well as more general cases, are 
available in Hamilton (1994), p. 373-408 
 

 
  

6. Benchmark Models 
 
As mentioned in Section 1, in order to assess the comparative performance of the newer 
group of methods (discussed in the preceding  sections) we need standard benchmark 
models. Among the models frequently resorted to in modeling asset prices, conditional 
heteroscedasticity  models figure prominently.  Thus we selected as our benchmark 
models, three standard conditional heteroscedasticity models as well as a standard 
random-walk  model. Since the literature relating to the conditional heteroscedastic 
models  has now become fairly well-known, we need confine ourselves only to a brief 
recapitulation of their salient features. 
 
 
Conditional Heteroscedastic Models :  A specific class of models (named ARCH(q)) to 
deal with problems of conditional heteroscedasticity (a common occurrence in financial 
time series) was suggested by Engle (1982). Since then several refinements to 
Engle’s(1982) basic model have been forthcoming on a continual basis. These 
refinements may be subsumed under the generic appellation of GARCH models. 
Following Nag and Mitra (2002), a useful taxonomy for the GARCH family is furnished 
by considering the following general model for the given series ⎨xt⎬ 
 

ttt
T

t hyx εδβ ++= 2                                                                              (24) 
 
where the yt vector contains the independent (and also lagged dependent) variables of the 
model and the conditional variance  is given as 2

th
 

1
2

−= ttt IVarh ε                                                                                   (25) 
 
It-1  being the information set at time (t-1). 
 
The conditional variance itself is modeled as 
 

∑ ∑
= =

−− ++=
q

i

p

j
jtjitit hh

1 1

22
0

2 φεαα                                                             (26) 

 16



 
We now distinguish various types of GARCH modelsx in terms of (24) and (26) 
 
Case1 (ARCH) :  If  in (24), δ=0 and p=0 in (26), we have the original ARCH(q) model 
of Engle (1982). 
 
Case 2 (ARCH-M) :  If  in (24), δ≠0, but p = 0, q ≥ 0 in (26), we have the ARCH-M 
(ARCH-in-mean) model suggested in Engle et al (1987). 
Case 3 (GARCH) :  If  in (24), δ=0, but p ≥ 0, q ≥ 0 in (26),  we have the GARCH(p,q) 
model (accredited to Bollerslev (1986)). 
 
Case 4 (GARCH-M) :  If  δ ≠ 0, and  p ≥ 0, q ≥ 0, we have the GARCH-M (GARCH-in-
mean) model (see Engle et al (1987 )) 
  
Case 5 (EGARCH) :  While the GARCH models discussed so far have been successful in 
capturing the phenomenon of volatility clustering in asset returns, they fail to account for 
one important observed feature of asset returns viz. that volatility tends to rise in response 
to “bad news” (excess returns lower than expected) and fall in response to “good news” 
(excess returns higher than expected). To capture these features, Nelson (1991) suggested 
a more general formulation in which (26) is replaced with  
 

∑ ∑
= =

−− ++=
q

i

p

j
jtjitit hzghLn

1 1

2
0

2 )()( φαα                                                             (27) 

 
where g(.) must be a function of both the magnitude and sign of zt, and  
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

t

t
t h

z
ε

                                                                                                               (28) 

 
Nelson (1991) suggests using the following form for g (.) 
 

[ tttt zEzzzg −+= λθ)( ]                                                                                   (29)             
 
with θ and λ constants. 
  In practice, (29) is the form of g(.) usually employed and for most applications the 
EGARCH(1,1) suffices (i.e. p=q=1 in (27)). 
 
For the purposes of this paper, we plan to use three alternative models from the above 
menu viz. GARCH (1,1), GARCH-M (1,1) and EGARCH (1,1). 
 
The final benchmark model is simply the random-walk model, which uses the latest 
available observation as the forecast. 

 
7. Forecasting Results 
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We now turn to a presentation of our forecasting results. Our forecasting exercise applies 
to the 1-year, 5-year and 10-year rates of interest in India. These are identified as the 
yields to maturityxi on GoI (government of India) dated securities traded in the SGL 
(secondary general ledger) segment of the RBI (Reserve Bank of India).The data is 
published on a weekly basis (RBI Weekly Statistical Supplement available at the website 
address www.rbi.org.in). The period of analysis was selected as 6 March 1998 to 11 
March 2005, incorporating a total of 363 weekly observations.xii In view of the unit roots 
evident in all the three series of interest rates, one-period differencing was resorted to.xiii

Of the 362 observations now at our disposal, we use 300 as the training sample (i.e. the 
parameters of each model are estimated over the initial 300 observations). The remaining 
62 observations (spanning 12 December 2003 to 11 February 2005) constitute the 
forecasting sample, over which we generate 1-period ahead forecasts. In computing the 
1-period ahead forecasts, we incorporate successively the actual values of new 
observations but do not re-estimate the parameters.  
 
Empirical Estimation of Models I-IV:   We now present essential  estimation details of 
the four second-generation models that we have discussed earlier. 
Model I (ANN-Wavelets): Various types of wavelets were experimented with but  there 
did not seem to be much difference in the outcomes. We therefore settled for the simplest 

Haar wavelet described by the low-pass filter  ( ) ⎟
⎠

⎞
⎜
⎝

⎛
=

2
1,

2
1, 10 gg .  So far as the 

activation function is concerned, several choices are available such as the linear, 
sigmoidal, arc tan, radial basis etc. We experimented with the linear and the radial basis 
functions, and present the results for the linear case only.  As already mentioned we take  
A1= A2=….. =AJ =Bm = p (=4), and the ANN is solved via the  back-propagation method 
, using  the Widrow-Hoff ( 1960 ) learning algorithm, yielding the forecast  . f

Nx
Model II (Mixed Spectum): For the mixed spectrum model, (with an incorporation of  the 

Bhansali correction), we estimated models of the type (18), and certain broad details are 

presented below in Table 1 

Model III (Fourier-Non-linear ARMA): The estimates for model (21) are presented below 

in Table 2. 

Model IV (Kalman Filter): For this exercise, we posit an ARMA(2,2)  with time-varying 

coefficients. 
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Table 1 

(Estimates for Model II) 

 r Frequencies 

ϖi

 

Order of AR 

model for ut 

 

Coefficients of  

AR model for ut

One-Year 1 ϖ1= 0.3560 2 φ1=  -0.1912 

φ2 =  -0.0168 

 

Five-Year 1 ϖ1 = 0.3142 1 φ1=  -0.1382 

 

Ten-Year 3 ϖ1 = 0.3142 

ϖ2 = 1.4451 

ϖ3 = 2.5761 

2 φ1=  -0.3376 

φ2=  -0.0252 

 

 

Notes:  Notation as per text. The order of AR model for ut is selected via the Bhansali-

Downham FPEα criterion  

 
Table 2 

(Estimates for Model III) 

 p q r Coefficients of 
trigonometric 
terms in (24) 

One-Year 19 0 2 A1 = -0.021* 
B1 = -0.0177* 
A2 = -0.0728* 
B2 = -0.0645* 

Five-Year 1 0 1 A1 = 0.0051* 
B1 = 0.0175 

Ten-Year 1 0 2 A1 = -0.0152* 
B1 = 0.0161* 
A2 = -0.0008* 
B2 = -0.0152* 

 
Notes:     (i) Notation as per equation (21)  
                (ii) (*) denotes significance at 5% 
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Forecast Evaluation (Conventional Measures): The evaluation of forecasts is of 
paramount importance as enabling the analyst to weed out unsatisfactory models and to 
isolate a set of adequate models. Both absolute and relative evaluation measures have 
been suggested in the literature and we use both in this paper.  
 
The absolute measures that we employ in this paper are  
 

(i) RMSE (Root Mean Square Error) = ∑
+=

−−

N

Tt
tte

TN 1

2
1/

1  

(ii) MAXAE (Maximum Absolute Error) = { }N
TttteMax 11/ +=−  

(iii) MAPE (Mean Absolute Percentage Error) = ∑
+=
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(iv) Theil’s U statistic which for any model M is defined as  
 

⎥
⎦

⎤
⎢
⎣

⎡
=

)(
)(
WALKRANDOMRMSE

MRMSEU M  

 
(v) We also introduce 2 additional accuracy measures viz. D ( the proportion of       
             times the model correctly forecasts the sign of the series) and TP ( the  
             proportion of times the model correctly forecasts a change in the sign of the       
            series) 

 
In the above et/t-1 is the one-period ahead forecast error associated with the model being 
tested, At is the absolute value of the actual observation at time t, N is the total number of 
observations, and T is the training period (see above). 
 
Note that our forecasts all pertain to interest rate changes, and for the participants 
involved in the money market and the government securities market, losses increases 
more than proportionately to the error magnitudes (so that a criterion like the RMSE 
becomes relevant) and also a large forecasting error in either direction can impose a very 
heavy cost on the market participants (hence our use of the MAXAE criterion in addition 
to the MAPE). The U statistic is a minimal accuracy check to see that our model at least 
outperforms the simplest benchmark model viz. Random Walk model (Model VIII in our 
terminology). Very often, for money market decision makers, forecasting the direction of 
interest rate change becomes an important criterion as also the prediction of turning 
points, and hence our use of the two additional measures D and TP.  

 
We now present details of the forecasting results for the 1-year interest rate series (see 
Table 3), restricting ourselves only to  qualitatively summarizing the results for the 5-year 
and 10-year interest rates.  

 20



Table 3 
 

(1-year Interest Rates) 
 

 
 
 
 
 
 

(1) 

RMSE 
 
 
 
 
 

(2) 

% 
Improvement 

in RMSE 
over best 

benchmark 
model 

(3) 

MAXAE 
 
 
 
 
 

(4) 

% 
Improvement 
in MAXAE 
over best 

benchmark 
model 

(5) 

MAPE
 
 
 
 
 

(6) 

% 
Improvement 

in MAPE 
over best 

benchmark 
model 

         (7) 

U 
Statistic 

 
 
 

 
(8) 

Model I 0.1671  
(2) 

5.11% 0.4896  
(2) 

7.67% 1.3257 
(2) 

10.44% 0.5838 

Model 
II 

0.1750 
(3) 

0.62% 0.5085 
 (3) 

4.11% 1.5760 
(6) 

-6.46% 0.6115 

Model 
III 

0.3556 
(8) 

-101.93% 0.8685 
 (8) 

-63.78% 9.9446 
(8) 

-571.80% 1.2424 

Model 
IV 

0.1621 
(1) 

7.95% 0.4677 
 (1) 

11.80% 0.9829 
(1) 

33.60% 0.5664 

Model 
V 

0.1768 
(6) 

-0.40% 0.5354 
 (6) 

-0.96% 1.5166 
(4) 

-2.45% 0.6177 

Model 
VI 

0.1761 
(4) 

0.00% 0.5325  
(5) 

-0.41% 1.4803 
(3) 

0.00% 0.6153 

Model 
VII 

0.1761 
(4) 

0.00% 0.5303  
(4) 

0.00% 1.5400 
(5) 

-4.03% 0.6153 

Model 
VIII 

0.2862 
(7) 

-62.52% 0.8110  
(7) 

-52.93% 3.8579 
(7) 

-160.62% 1.00 

 
 

Notes:    
(i) Figures in parentheses in Columns (2) and (4) represent the models 

ranked by the respective criteria (with the best model allotted Rank 1 
etc.) 

(ii) The boldface entry in Columns (2) and (4) indicate the best benchmark 
model. 

(iii) Ties are given equal rank, and the subsequent rank is omitted (following 
the standard ranking convention) 

(iv) Column (3) gives the percentage improvement in RMSE for each model 
as compared to the best benchmark model  (with negative entries 
corresponding to a worse performance with respect to this model ). 
Columns (5) and (7) carry similar information with respect to the 
MAXAE and MAPE criteria.  
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Table 4 
 

(Directional and Turning Point Statistics) 
 

 D TP 
 1-year 5-year 10-year 1-year 5-year 10-year 

Model I  36 
(2) 

35 
(3) 

31 
(3) 

0 
(5) 

0 
(3) 

0 
(5) 

Model II 33 
(3) 

23 
(7) 

31 
(3) 

2 
(3) 

0 
(3) 

11 
(2) 

Model III 24 
(7) 

29 
(5) 

39 
(2) 

11 
(2) 

3 
(2) 

4 
(3) 

Model IV 57 
(1) 

57 
(1) 

54 
(1) 

18 
(1) 

14 
(1) 

18 
(1) 

Model V 32 
(4) 

36 
(2) 

26 
(5) 

0 
(5) 

0 
(3) 

0 
(5) 

Model VI 27 
(6) 

30 
(4) 

26 
(5) 

0 
(5) 

0 
(3) 

0 
(5) 

Model 
VII 

32 
(4) 

26 
(6) 

25 
(7) 

0 
(5) 

0 
(3) 

0 
(5) 

Model 
VIII 

14 
(8) 

19 
(8) 

17 
(8) 

1 
(4) 

0 
(3) 

1 
(4) 

Total 62 62 62 42 27 25 
 

Notes :  Same as (i) to (iii) of Notes to Table 3 above. 
 
We now try to analyse the message contents of  our tables. To facilitate the discussion 
we refer to models I to IV as the candidate models ( we continue to refer to models V 
to VIII as benchmark models) 
 

1. So far as the short –term (1-year)  interest rate is concerned (see Table 3), 
two of our candidate models (I and IV) out-rank the best performing 
benchmark model, irrespective of whether the evaluation criterion is 
RMSE, MAPE or MAXAE. Of these Model IV (Kalman Filter ) is the 
best, showing a marked  improvement of  performance (7.95% in RMSE , 
11.80% in MAXAE and 33.60% in MAPE) over the best benchmark 
model. The wavelet-neural network model I  is a fairly close second on all 
three criteria.The mixed spectrum model II performs well on two of the 
criteria (RMSE and MAXAE) but slips on the MAPE. The Fourier non-
linear ARMA model is a disappointment emerging last among all the 
models, irrespective of the criterion used, with a performance even worse 
than the simple random walk ( Theil’s U statistic substantially over 1). 

 
2. Analysis of the  longer tenures of interest rates, reiterates the broad 

features of Table 3, but less sharply. Model IV emerges among the top 
three ranks on all the criteria in the case of 10-year rates and in two of the 

 22



three criteria (RMSE and MAXAE) in the 5-year case. Performance of  
models I and II , however is not clear-cut, depending upon the forecast 
evaluation criterion used. Model III performs poorly again.  

 
3. The top honours among the benchmark models are evenly shared between 

the EGARCH (1,1) and GARCH-M models (Models VI and VII 
respectively). 

 
4. We now turn to Table 4  which presents the details regarding the statistics 

D and TP. Because our results pertain to interest rate changes, the statistic 
D captures the accuracy of our models in the prediction of the direction of 
interest rate (level) movements, while TP refers to the  capacity of the 
respective models to capture the turning points in the interest rates 
(levels). The performance of the benchmark models in capturing turning 
points is extremely poor, as also that of the candidate Model I. Model IV 
is the most  successful with success rates ranging from 38% to 72%, which 
should be considered excellent given the well-known difficulty of 
accurately predicting turning points. The success of the remaining two 
candidate models remains fairly low. 

 
5. In contrast to the somewhat disappointing scenario with respect to turning 

point prediction, the situation regarding the prediction of directional 
movements (as indicated by D in Table 4) is more sanguine. Model IV 
once again emerges a clear winner, with a success ratio of nearly 90% 
throughout.  Model I also performs creditably, with more than 50% 
success ratio in all interest rate categories. Model II ranks fairly high on 
the 1-year and 10-year categories but quite low on the 5-year category. 
Model III performs well only on the 10-year interest rate. The 
performance of the benchmark models is markedly inferior to that of the 
candidate models (with isolated exceptions). 

 
 
 
 
 
Forecast Comparisons  (Formal Tests of Significance):  The forecast evaluation 
procedures discussed so far could be faulted on the grounds that there is little formal 
statistical theory underpinning them.  
 
A number of earlier attempts at formal comparisons between competing forecast models, 
were grounded in restrictive assumptions such as quadratic loss functions, Gaussianity 
and absence of serial correlation in forecast errors etc. (see e.g. the Morgan-Granger-
Newbold test (Morgan (1939), Granger & Newbold (1977)). We therefore consider two 
modern tests, which are not tied to such restrictive assumptions viz.  

(i) The d-test of Diebold and Mariano (1995) 
(ii) The forecast encompassing test proposed by Chong and Hendry (1986) 
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Diebold-Mariano’s d-test: Suppose we are interested in comparing 2 models A and B, 
whose 1-period ahead forecast errors at time t, we denote by  and   
respectively. Define  

A
tte 1/ −

B
tte 1/ −

 
( ) ( )B

tt
A

ttt egegd 1/1/ −− −=                                                                                  (30) 
 
where g(.) is a loss function. 
 
Suppose we have R 1-period ahead forecasts from models A and B, and construct the 
series { } , then Diebold & Mariano (1995) show that asymptotically the statistic R

ttd 1=
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    is   distributed as N(0,1) under the null hypothesis H0 that 

models A and B are equivalent so far as forecasting ability is concerned. 
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where   is the autocovariance of the series )(τγ d

∧

{ }R
ttd 1=  at lag τ and Q is a suitable 

truncation parameter (usually Q ≈ R1/3 ). 
 
We apply the d-test to effect pair-wise comparisons of the out of sample forecasting 
performances of our models, using a quadratic loss function.  If the null hypothesis  H0 is 
rejected, we test which model  is superior using a one-tailed test. In the interests of 
brevity of presentation, only the comparisons across candidate  models are considered 
here (see Table 5). The fact that R=62, in our case implies that our sample is modest-
sized and the asymptotic results need some care in interpretation.  
 
Table 5 presents the d-statistics for the pair-wise comparisons. The entry in the cell (i,j) is 
interpreted as the d-statistic with the role of Model A assigned to the model in column j  
and Model B being taken as the model in row i. The results of the table may be 
summarized as follows: 
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(i) For 5-year and 10-year interest rates, Model IV is unequivocally superior to the 
other three candidate models. For the 1-year rate the same  pattern holds, except 
that Models I and IV are indistinguishable  on the d-criterion. 

(ii) Across the range of interest rates considered, Model III is clearly inferior to the 
other three candidate models 

(iii) Model I fares significantly better than Model II, except for the 5-year case, where 
there does not seem to be a statistically significant difference between the 
performance of the two models. 

 
  
 

Table 5 
 

(Diebold-Mariano ‘d’ test) 
 

One-Year Interest Rate 
 Model I Model II Model III Model IV 

Model I 2.2029* 5.4187** -1.6986 
Model II 5.0936** -3.8172** 
Model III -5.4845** 
Model IV 

 
 

 
 

Five-Year Interest Rate 
Model I 1.4651 7.0002** -2.2394* 
Model II 6.6596** -3.2873** 
Model III -7.2226** 
Model IV 

 
 

 
 

Ten-Year Interest Rate 
Model I 2.3467** 3.4890** -3.0624** 
Model II 3.2611** -3.2414** 
Model III -4.1032** 
Model IV 

 
 

 
 

 
Note: The notations (*) and (**) refer to significant values at 5% and 1% levels 
respectively. 

 
 
 
 
Forecast Encompassing:   The forecast encompassing  test seeks to determine whether 
the forecast from one model (say A) incorporates all the statistically relevant information 
from a competitor model (say B). If this happens then A is said to forecast encompass B. 
The following model is estimated using a consistent estimator 
 

t
B
tB

A
tAt xxx εφφ ++= , t = T+1, ….N                                       (32) 
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where xt  is the actual value of the series, xt
A, xt

B, are the forecasts from models A and B, 
and  {T+1…N} is the period over which the forecasts are made. 
 
We now have the following three possibilities 
 (i) ( ) ( 0,1, =BA )φφ     then A forecast encompasses B 
(ii) ( ) ( 1,0, =BA )φφ     then B forecast encompasses A 
(ii)  neither of the above is true, in which case neither model forecast encompasses   the 
other. 
 
The results of  the forecasting encompassing exercise are reproduced in Table 6. 
 

Table 6 
 

(Forecast Encompassing Test) 
 

One-Year Interest Rate 
 Model I Model II Model III Model IV 

Model I (N,N) (Y,N) (N,N) 
Model II (Y,N) (N,N) 
Model III (N,N) 
Model IV 

 
 

 
 

Five-Year Interest Rate 
Model I (Y,N) (Y,N) (N,N) 
Model II (Y,N) (N,N) 
Model III (N,N) 
Model IV 

 
 

 
 

Ten-Year Interest Rate 
Model I (Y,N) (Y,N) (N,N) 
Model II (Y,N) (N,N) 
Model III (N,N) 
Model IV 

 
 

 
 

 
 

 
The entry in the cell (i,j) of each interest rate panel panel is to be interpreted as follows. If 
Model i forecast encompasses Model j (for the interest rate under consideration) , the first 
entry in the cell (i,j) is put as Y (otherwise N) and if Model j forecast encompasses Model 
i, the second entry  is put as Y (otherwise N) . The striking feature about Table 6 is that 
the qualitative features are uniform across the three interest rates considered ( except for 
one solitary instance) and these common features are listed below 

(i) Model I forecast encompasses Models II and III (but not IV) for the 5-year 
and 10-year interest rates, but in the one-year case, it only forecast 
encompasses Model III 

(ii) Model II forecast encompasses Model III (but not IV) 
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(iii) Model IV neither forecast encompasses any other model, nor is it forecast 
encompassed by any other model. 

 
8. CONCLUSIONS 

 
In view of their pronounced volatility in a deregulated environment, forecasting interest 
rates constitutes a formidable challenge. Linear models have, by and large, turned in 
disappointing results, falling considerably below the aspirations of market players and 
regulators, alike. What seems to be indicated is the need for methods which can 
satisfactorily account for the myriad departures from standard assumptions (such as 
stationarity, Gaussianity, linearity etc.) exhibited by interest rates in practice. A wide 
variety of GARCH models has now become established, as a particularly convenient 
framework for asset price forecasting, and any new method needs to be assessed with 
respect to the GARCH models as benchmarks. In this paper, four alternative methods are 
examined (Models I to IV—see Section 1 for a description of their salient features), 
which have emerged in recent years but have not so far been applied extensively in the 
interest forecasting context. 
 
Our four candidate models are compared with a benchmark set comprising three 
varieties of GARCH models and a random-walk model. A number of comparison criteria 
were deployed for evaluating model forecasting performance. While some variation in 
model performance was in evidence across the comparison criteria as well as the three 
interest rates categories, quite a few conclusions displayed a fair amount of robustness.  
Two such conclusions are the remarkably superior performance of Model IV and the 
rather disappointing performance of Model III. Models I and II perform fairly well, with 
the former holding a significant edge over the latter. While Model IV almost always out-
performs the benchmark models, Model I ( and to a lesser extent Model II) do so 
creditably often. Only Model III rarely rises above the benchmark performance and quite 
often slips below even the random walk model.  
 
The search for superior forecasting models is an endless one. This article has tried to 
project the potentiality of some newer models for forecasting volatile series such as 
interest rates.  Our best performing model (Kalman Filter), however, being  a well-
established method in econometrics, hardly needs any special advocacy now. Model III,  
in spite of its intuitive appeal, needs considerable elaboration and refinement  before it 
can become a serious contender in the forecasting racexiv. Our analysis points to Models 
I and II as newer alternative forecasting methodologies, that might  hold  interesting 
promise for the future.    
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ENDNOTES 
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i In fairness, spectral analysts have also been much concerned with time-frequency resolution, the work on 
time-varying spectra by Priestley (1981), Gabor (1946), Melard (1985), Zurbenko (1991) and others, being 
prime examples. But it is now generally agreed that wavelets are a far more convenient way of representing 
time-varying complex data patterns than time-varying spectral analysis (see Percival & Walden (2000)) 
ii A high-pass (low-pass) filter preserves the high frequency (low frequency) properties of the underlying 
series, while discarding the low frequency (high-frequency) features. 
iii The Haar wavelets are the earliest and simplest form of wavelets, and still retain their popularity in 
applied work. 
iv The method for obtaining qj is given in Gencay et al (2002), p. 121. 
v Starck  et al (1998) also prove that the method is efficient, in the sense of minimizing the MSE (mean 
square error). 
vi The technical definitions can be recovered from any standard text such as Bishop (1995) or Kuan & 
White (1994). 
vii The method can be generalized to more than one coefficient without much difficulty, but this is likely to 
lead to over-parametrization of the final model. Hence, working with a single coefficient would usually 
lead to more efficient results. 
viii It could happen that for none of the j, it is true that SBC(j)  <  SBC(0), in which case no asymmetries 
seem to be present to any significant extent on account of αm, and either our choice of αm as the non-linear 
coefficient is wrong or a linear model might  be the appropriate one.  
If the coefficient in question is βm , the procedure is essentially the same except that (21) is replaced with 

                                                        
 
ix Thus if Ct is interpreted as a vector of independent variables and Φt= Rt=I, the system (31), (32) is a 
random coefficient regression equation. Similarly, defining Φt and  Rt   as matrices of autoregressive and 
moving average coefficients respectively, the system may be viewed as an ARMA model (with time 
varying coefficients) and measurement errors.  
x Apart from the models considered below, we have the quadratic GARCH (QGARCH) model  (Engle & 
Ng (1993)), the absolute GARCH (AGARCH) model (Heutschel (1991)) and the threshold ARCH 
(TARCH) model (Rabemanjara and Zakoian (1993)) and several others.  
 
xi The calculation of this yield is described in RBI Bulletin (June 2005), p.S-543 
xii Jan 1998 witnessed mayhem in the Indian government securities market, in the aftermath of the Asian 
crisis, when yields rose to unprecedented levels. To avoid unnecessary influence of this extreme situation 
on our results, we thought it best to commence the analysis from a later period, when the yields had 
returned to their normal levels.  
xiii Except for the wavelet-based neural network model, all the other methods considered here require the 
underlying series to be stationary. In the interest of uniformity, we use first differences throughout.  
xiv Of course, the Kalman filter is a well-established method in econometrics, so it hardly needs any special 
advocacy now.   
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